4 research outputs found

    Determinants of Choice of Institutional Marketing Arrangements by Small Poultry Businesses in Tanzania: Application of Transaction Cost Theory

    Get PDF
    The transaction cost (TC) theory of the firm provides a conceptual model suitable for investigating the mechanism by which business firms evolve and grow. This paper uses poultry farm businesses (PFBs) in Tanzania as a vehicle of assessing relevance of the theory in explaining factors determining choice of institutional arrangement, for the purpose of identifying policy measures that can influence small business firms to opt for contractual businesses. A cross-sectional survey was conducted in two regions in the country covering 170 respondents. Logistic regression analysis indicate that the choice by business firms to opt for a particular institutional arrangement is determined by all the components of total transaction cost (TTC); as all were statistically significant (P < 0.05). It shows also that search and screening cost has greatest impact on choice of institutional arrangement (Wald = 8.745) followed by enforcement cost (Wald = 4.735) and negotiation cost (Wald = 4.735). It indicates in addition that, probability of PFBs to enter into contractual businesses falls with increase in Transaction Costs (TCs). Linear regression analysis shows, in addition that, search and screening cost has greatest elasticity to TTC (Beta = 0.596), followed by enforcement cost (Beta = 0.43) and negotiation cost (Beta =0.437). A theory based intervention should therefore, mainly be focused on reducing search and screening cost, followed by the other components of TTC.Keywords: Transaction costs, poultry farm businesses, institutional arrangement

    Infection, colonization and shedding of Campylobacter and Salmonella in animals and their contribution to human disease: A review

    Get PDF
    Livestock meat and offal contribute significantly to human nutrition as sources of high‐quality protein and micronutrients. Livestock products are increasingly in demand, particularly in low‐ and middle‐income settings where economies are growing and meat is increasingly seen as an affordable and desirable food item. Demand is also driving intensification of livestock keeping and processing. An unintended consequence of intensification is increased exposure to zoonotic agents, and a contemporary emerging problem is infection with Campylobacter and Salmonella spp. from livestock (avian and mammalian), which can lead to disease, malabsorption and undernutrition through acute and chronic diarrhoea. This can occur at the farm, in households or through the food chain. Direct infection occurs when handling livestock and through bacteria shed into the environment, on food preparation surfaces or around the house and surroundings. This manuscript critically reviews Campylobacter and Salmonella infections in animals, examines the factors affecting colonization and faecal shedding of bacteria of these two genera as well as risk factors for human acquisition of the infection from infected animals or environment and analyses priority areas for preventive actions with a focus on resource‐poor settings

    Blood-stage malaria vaccine candidate RH5.1/Matrix-M in healthy Tanzanian adults and children; an open-label, non-randomised, first-in-human, single-centre, phase 1b trial

    Get PDF
    Background: A blood-stage Plasmodium falciparum malaria vaccine would provide a second line of defence to complement partially effective or waning immunity conferred by the approved pre-erythrocytic vaccines. RH5.1 is a soluble protein vaccine candidate for blood-stage P falciparum, formulated with Matrix-M adjuvant to assess safety and immunogenicity in a malaria-endemic adult and paediatric population for the first time. Methods: We did a non-randomised, phase 1b, single-centre, dose-escalation, age de-escalation, first-in-human trial of RH5.1/Matrix-M in Bagamoyo, Tanzania. We recruited healthy adults (aged 18–45 years) and children (aged 5–17 months) to receive the RH5.1/Matrix-M vaccine candidate in the following three-dose regimens: 10 μg RH5.1 at 0, 1, and 2 months (Adults 10M), and the higher dose of 50 μg RH5.1 at 0 and 1 month and 10 μg RH5.1 at 6 months (delayed-fractional third dose regimen; Adults DFx). Children received either 10 μg RH5.1 at 0, 1, and 2 months (Children 10M) or 10 μg RH5.1 at 0, 1, and 6 months (delayed third dose regimen; Children 10D), and were recruited in parallel, followed by children who received the dose-escalation regimen (Children DFx) and children with higher malaria pre-exposure who also received the dose-escalation regimen (High Children DFx). All RH5.1 doses were formulated with 50 μg Matrix-M adjuvant. Primary outcomes for vaccine safety were solicited and unsolicited adverse events after each vaccination, along with any serious adverse events during the study period. The secondary outcome measures for immunogenicity were the concentration and avidity of anti-RH5.1 serum IgG antibodies and their percentage growth inhibition activity (GIA) in vitro, as well as cellular immunogenicity to RH5.1. All participants receiving at least one dose of vaccine were included in the primary analyses. This trial is registered at ClinicalTrials.gov, NCT04318002, and is now complete. Findings: Between Jan 25, 2021, and April 15, 2021, we recruited 12 adults (six [50%] in the Adults 10M group and six [50%] in the Adults DFx group) and 48 children (12 each in the Children 10M, Children 10D, Children DFx, and High Children DFx groups). 57 (95%) of 60 participants completed the vaccination series and 55 (92%) completed 22 months of follow-up following the third vaccination. Vaccinations were well-tolerated across both age groups. There were five serious adverse events involving four child participants during the trial, none of which were deemed related to vaccination. RH5-specific T cell and serum IgG antibody responses were induced by vaccination and purified total IgG showed in vitro GIA against P falciparum. We found similar functional quality (ie, GIA per μg RH5-specific IgG) across all age groups and dosing regimens at 14 days after the final vaccination; the concentration of RH5.1-specific polyclonal IgG required to give 50% GIA was 14·3 μg/mL (95% CI 13·4–15·2). 11 children were vaccinated with the delayed third dose regimen and showed the highest median anti-RH5 serum IgG concentration 14 days following the third vaccination (723 μg/mL [IQR 511–1000]), resulting in all 11 who received the full series showing greater than 60% GIA following dilution of total IgG to 2·5 mg/mL (median 88% [IQR 81–94]). Interpretation: The RH5.1/Matrix-M vaccine candidate shows an acceptable safety and reactogenicity profile in both adults and 5–17-month-old children residing in a malaria-endemic area, with all children in the delayed third dose regimen reaching a level of GIA previously associated with protective outcome against blood-stage P falciparum challenge in non-human primates. These data support onward efficacy assessment of this vaccine candidate against clinical malaria in young African children. Funding: The European and Developing Countries Clinical Trials Partnership; the UK Medical Research Council; the UK Department for International Development; the National Institute for Health and Care Research Oxford Biomedical Research Centre; the Division of Intramural Research, National Institute of Allergy and Infectious Diseases; the US Agency for International Development; and the Wellcome Trust
    corecore