59 research outputs found

    Autologous chondrocyte implantation versus ACI using 3D-bioresorbable graft for the treatment of large full-thickness cartilage lesions of the knee

    Full text link
    BACKGROUND: In autologous chondrocyte implantation (ACI), the periosteum patch which is sutured over the cartilage defect has been identified as a major source of complications such as periosteal hypertrophy. In the present retrospective study, we compared midterm results of first-generation ACI with a periosteal patch to second generation ACI using a biodegradable collagen fleece (BioSeed-C) in 82 patients suffering from chronic posttraumatic and degenerative cartilage lesions of the knee. METHODS: Clinical outcome was assessed in 42 patients of group 1 and in 40 patients of group 2 before implantation of the autologous chondrocytes and at a minimum follow-up of 2 years using the ICRS score, the modified Cincinnati score and the Lysholm score. RESULTS: Although patients treated with BioSeed-C had more previous surgical procedures on their respective knees, highly significant improvements (P < 0.001) were assessed in both groups at comparable outcome levels: the ICRS score improved from grade D (poor) preoperatively to grade C (fair); the modified Cincinnati knee score from 3.26 to 6.4 (group 1) and 3.3 and 6.88 (group 2). Lysholm score improved from 33 to 70 points (group 1) and from 47 to 78 points (group 2), respectively. Revision surgery was due to symptomatic periosteal hypertrophy (n = 4), graft failure (n = 3), plica syndrome (n = 2) synovectomy (n = 1) (group 1); and graft failure (n = 2), debridement (n = 1), synovectomy (n = 2) (group 2). CONCLUSION: These results suggest that BioSeed-C is an equally effective treatment option for focal degenerative chondral lesions of the knee in this challenging and complex patient profile

    Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2

    Get PDF
    The muscle-specific RING finger proteins MuRF1 and MuRF2 have been proposed to regulate protein degradation and gene expression in muscle tissues. We have tested the in vivo roles of MuRF1 and MuRF2 for muscle metabolism by using knockout (KO) mouse models. Single MuRF1 and MuRF2 KO mice are healthy and have normal muscles. Double knockout (dKO) mice obtained by the inactivation of all four MuRF1 and MuRF2 alleles developed extreme cardiac and milder skeletal muscle hypertrophy. Muscle hypertrophy in dKO mice was maintained throughout the murine life span and was associated with chronically activated muscle protein synthesis. During ageing (months 4–18), skeletal muscle mass remained stable, whereas body fat content did not increase in dKO mice as compared with wild-type controls. Other catabolic factors such as MAFbox/atrogin1 were expressed at normal levels and did not respond to or prevent muscle hypertrophy in dKO mice. Thus, combined inhibition of MuRF1/MuRF2 could provide a potent strategy to stimulate striated muscles anabolically and to protect muscles from sarcopenia during ageing

    TRIM16 acts as a tumour suppressor by inhibitory effects on cytoplasmic vimentin and nuclear E2F1 in neuroblastoma cells

    Get PDF
    The family of tripartite-motif (TRIM) proteins are involved in diverse cellular processes, but are often characterized by critical protein–protein interactions necessary for their function. TRIM16 is induced in different cancer types, when the cancer cell is forced to proceed down a differentiation pathway. We have identified TRIM16 as a DNA-binding protein with histone acetylase activity, which is required for the retinoic acid receptor β2 transcriptional response in retinoid-treated cancer cells. In this study, we show that overexpressed TRIM16 reduced neuroblastoma cell growth, enhanced retinoid-induced differentiation and reduced tumourigenicity in vivo. TRIM16 was only expressed in the differentiated ganglion cell component of primary human neuroblastoma tumour tissues. TRIM16 bound directly to cytoplasmic vimentin and nuclear E2F1 in neuroblastoma cells. TRIM16 reduced cell motility and this required downregulation of vimentin. Retinoid treatment and enforced overexpression caused TRIM16 to translocate to the nucleus, and bind to and downregulate nuclear E2F1, required for cell replication. This study, for the first time, demonstrates that TRIM16 acts as a tumour suppressor, affecting neuritic differentiation, cell migration and replication through interactions with cytoplasmic vimentin and nuclear E2F1 in neuroblastoma cells

    Conformation-regulated mechanosensory control via titin domains in cardiac muscle

    Get PDF
    The giant filamentous protein titin is ideally positioned in the muscle sarcomere to sense mechanical stimuli and transform them into biochemical signals, such as those triggering cardiac hypertrophy. In this review, we ponder the evidence for signaling hotspots along the titin filament involved in mechanosensory control mechanisms. On the way, we distinguish between stress and strain as triggers of mechanical signaling events at the cardiac sarcomere. Whereas the Z-disk and M-band regions of titin may be prominently involved in sensing mechanical stress, signaling hotspots within the elastic I-band titin segment may respond primarily to mechanical strain. Common to both stress and strain sensor elements is their regulation by conformational changes in protein domains
    corecore