17 research outputs found

    Leveraging on past investment in understanding the immunology of COVID-19 – the South African experience.

    Get PDF
    Significance:The COVID-19 pandemic, and in particular the emergence of viral variants, resulted in an enormous global public health crisis. South African scientists, with a long history of studying viral evolution and antibody responses, were well positioned to pivot their research to focus on SARS-CoV-2. Using the expertise and infrastructure developed over decades for HIV vaccine research, South Africa took a leadership role in studying the antibody response elicited by SARS-CoV-2 infection and vaccination. We describe key scientific outcomes of those studies, and the drivers of a successful national response

    Dependence on a variable residue limits the breadth of an HIV MPER neutralizing antibody, despite convergent evolution with broadly neutralizing antibodies

    Get PDF
    Broadly neutralizing antibodies (bNAbs) that target the membrane-proximal external region (MPER) of HIV gp41 envelope, such as 4E10, VRC42.01 and PGZL1, can neutralize \u3e 80 % of viruses. These three MPER-directed monoclonal antibodies share germline antibody genes (IGHV1 - 69 and IGKV3 - 20) and form a bNAb epitope class. Furthermore, convergent evolution within these two lineages towards a 111.2GW111.3 motif in the CDRH3 is known to enhance neutralization potency. We have previously isolated an MPER neutralizing antibody, CAP206 - CH12, that uses these same germline heavy and light chain genes but lacks breadth (neutralizing only 6 % of heterologous viruses). Longitudinal sequencing of the CAP206-CH12 lineage over three years revealed similar convergent evolution towards 111.2GW111.3 among some lineage members. Mutagenesis of CAP206-CH12 from 111.2GL111.3 to 111.2GW111.3 and the introduction of the double GWGW motif into CAP206-CH12 modestly improved neutralization potency (2.5 3 -fold) but did not reach the levels of potency of VRC42.01, 4E10 or PGZL1. To explore the lack of potency/breadth, viral mutagenesis was performed to map the CAP206-CH12 epitope. This indicated that CAP206-CH12 is dependent on D674, a highly variable residue at the solvent-exposed elbow of MPER. In contrast, VRC42.01, PGZL1 and 4E10 were dependent on highly conserved residues (W672, F673, T676, andW680) facing the hydrophobic patch of the MPER. Therefore, while CAP206-CH12, VRC42.01, PGZL1 and 4E10 share germline genes and show some evidence of convergent evolution, their dependence on different amino acids, which impacts orientation of binding to the MPER, result in differences in breadth and potency. These data have implications for the design of HIV vaccines directed at the MPER epitope

    Despite delayed kinetics, people living with HIV achieve equivalent antibody function after SARS-CoV-2 infection or vaccination

    Get PDF
    The kinetics of Fc-mediated functions following SARS-CoV-2 infection or vaccination in people living with HIV (PLWH) are not known. We compared SARS-CoV-2 spike-specific Fc functions, binding, and neutralization in PLWH and people without HIV (PWOH) during acute infection (without prior vaccination) with either the D614G or Beta variants of SARS-CoV-2, or vaccination with ChAdOx1 nCoV-19. Antiretroviral treatment (ART)–naïve PLWH had significantly lower levels of IgG binding, neutralization, and antibody-dependent cellular phagocytosis (ADCP) compared with PLWH on ART. The magnitude of antibody-dependent cellular cytotoxicity (ADCC), complement deposition (ADCD), and cellular trogocytosis (ADCT) was differentially triggered by D614G and Beta. The kinetics of spike IgG-binding antibodies, ADCC, and ADCD were similar, irrespective of the infecting variant between PWOH and PLWH overall. However, compared with PWOH, PLWH infected with D614G had delayed neutralization and ADCP. Furthermore, Beta infection resulted in delayed ADCT, regardless of HIV status. Despite these delays, we observed improved coordination between binding and neutralizing responses and Fc functions in PLWH. In contrast to D614G infection, binding responses in PLWH following ChAdOx-1 nCoV-19 vaccination were delayed, while neutralization and ADCP had similar timing of onset, but lower magnitude, and ADCC was significantly higher than in PWOH. Overall, despite delayed and differential kinetics, PLWH on ART develop comparable responses to PWOH, supporting the prioritization of ART rollout and SARS-CoV-2 vaccination in PLWH

    Infection pre-Ad26.COV2.S-vaccination primes greater class switching and reduced CXCR5 expression by SARS-CoV-2-specific memory B cells

    Get PDF
    Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the memory B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. Participants were either naïve to SARS-CoV-2 or had been infected before vaccination. SARS-CoV-2-specific memory B-cells expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a significant reduction in expression of the germinal center chemokine receptor CXCR5, and increased class switching. These B cell features correlated with neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). Vaccination-induced effective neutralization of the D614G variant in both infected and naïve participants but boosted neutralizing antibodies against the Beta and Omicron variants only in participants with prior infection. In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell expression of the lung-homing receptor CXCR3, which was sustained in the previously infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the response to vaccination can provide insight into the impact of prior infection on memory B cell homing, CSM, cTfh, and neutralization activity. These data can provide early signals to inform studies of vaccine boosting, durability, and co-morbidities

    Cross-reactive neutralizing antibody responses elicited by SARS-CoV-2 501Y.V2 (B.1.351)

    Get PDF
    No abstract available.The South African Medical Research Council, the Centers for Disease Control and Prevention, the ELMA South Africa Foundation, the Wellcome Trust, the Fogarty International Center of the National Institutes of Health, the FLAIR Fellowship program, the European and Developing Countries Clinical Trials Partnership 2 of the European Union Horizon 2020 program, the South African Research Chairs Initiative of the Department of Science and Innovation and the National Research Foundation.http://www.nejm.orgam2022Internal Medicin

    Shared N417-dependent epitope on the SARS-CoV-2 Omicron, Beta, and Delta Plus variants

    Get PDF
    As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, several variants of concern (VOCs) have arisen which are defined by multiple mutations in their spike proteins. These VOCs have shown variable escape from antibody responses and have been shown to trigger qualitatively different antibody responses during infection. By studying plasma from individuals infected with either the original D614G, Beta, or Delta variants, we showed that the Beta and Delta variants elicit antibody responses that are overall more cross-reactive than those triggered by D614G. Patterns of cross-reactivity varied, and the Beta and Delta variants did not elicit cross-reactive responses to each other. However, Beta-elicited plasma was highly cross-reactive against Delta Plus (Delta+), which differs from Delta by a single K417N mutation in the receptor binding domain, suggesting that the plasma response targets the N417 residue. To probe this further, we isolated monoclonal antibodies from a Beta-infected individual with plasma responses against Beta, Delta+, and Omicron, which all possess the N417 residue. We isolated an N417-dependent antibody, 084-7D, which showed similar neutralization breadth to the plasma. The 084-7D MAb utilized the IGHV3-23*01 germ line gene and had somatic hypermutations similar to those of previously described public antibodies which target the 417 residue. Thus, we have identified a novel antibody which targets a shared epitope found on three distinct VOCs, enabling their cross-neutralization. Understanding antibodies targeting escape mutations, such as K417N, which repeatedly emerge through convergent evolution in SARS-CoV-2 variants, may aid in the development of next-generation antibody therapeutics and vaccines. IMPORTANCE : The evolution of SARS-CoV-2 has resulted in variants of concern (VOCs) with distinct spike mutations conferring various immune escape profiles. These variable mutations also influence the cross-reactivity of the antibody response mounted by individuals infected with each of these variants. This study sought to understand the antibody responses elicited by different SARS-CoV-2 variants and to define shared epitopes. We show that Beta and Delta infections resulted in antibody responses that were more cross-reactive than the original D614G variant, but they had differing patterns of cross-reactivity. We further isolated an antibody from Beta infection which targeted the N417 site, enabling cross-neutralization of Beta, Delta+, and Omicron, all of which possess this residue. The discovery of antibodies which target escape mutations common to multiple variants highlights conserved epitopes to target in future vaccines and therapeutics.The South African Research Chairs Initiative of the Department of Science and Innovation, the National Research Foundation of South Africa, the SA Medical Research Council SHIP program and the Bill and Melinda Gates Foundation, through the Global Immunology and Immune Sequencing for Epidemic Response (GIISER) program.https://journals.asm.org/journal/jvihj2023ImmunologyInternal Medicin

    Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization

    Get PDF
    The emergence of Omicron (Pango lineage B.1.1.529), first identified in Botswana and South Africa, may compromise vaccine effectiveness and lead to re-infections1. We investigated whether Omicron escapes antibody neutralization in South Africans vaccinated with Pfizer BNT162b2. We also investigated if Omicron requires the ACE2 receptor to infect cells. We isolated and sequence confirmed live Omicron virus from an infected person in South Africa and compared plasma neutralization of Omicron relative to an ancestral SARS-CoV-2 strain, observing that Omicron still required ACE2 to infect. For neutralization, blood samples were taken soon after vaccination from participants who were vaccinated and previously infected or vaccinated with no evidence of previous infection. Neutralization of ancestral virus was much higher in infected and vaccinated versus vaccinated only participants but both groups showed a 22-fold escape from vaccine elicited neutralization by the Omicron variant. However, in the previously infected and vaccinated group, the level of residual neutralization of Omicron was similar to the level of neutralization of ancestral virus observed in the vaccination only group. These data support the notion that, provided high neutralization capacity is elicited by vaccination/boosting approaches, reasonable effectiveness against Omicron may be maintained

    Ad26.COV2.S breakthrough infections induce high titers of neutralizing antibodies against Omicron and other SARS-CoV-2 variants of concern

    Get PDF
    The Janssen (Johnson & Johnson) Ad26.COV2.S non-replicating viral vector vaccine has been widely deployed for COVID-19 vaccination programs in resource-limited settings. Here we confirm that neutralizing and binding antibody responses to Ad26.COV2.S vaccination are stable for 6 months post-vaccination, when tested against multiple SARS-CoV-2 variants. Secondly, using longitudinal samples from individuals who experienced clinically mild breakthrough infections 4 to 5 months after vaccination, we show dramatically boosted binding antibodies, Fc effector function, and neutralization. These high titer responses are of similar magnitude to humoral immune responses measured in convalescent donors who had been hospitalized with severe illness, and are cross-reactive against diverse SARS-CoV-2 variants, including the neutralizationresistant Omicron (B.1.1.529) variant that currently dominates global infections, as well as SARS-CoV-1. These data have implications for population immunity in areas where the Ad26.COV2.S vaccine has been widely deployed, but where ongoing infections continue to occur at high levels.The South African Medical Research Council, the South African Research Chairs Initiative of the Department of Science and Innovation; the National Research Foundation of South Africa, the EDCTP2 program of the European Union’s Horizon 2020 program, the Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), which is supported by core funding from the Wellcome Trust and the Poliomyelitis Research Foundation, MRC UK, NRF, the Lily and Ernst Hausmann Trust and L’Oreal/Unesco Women in Science South Africa Young Talents awardee.http://www.cell.com/cell-host-microbe/homeImmunologyInternal Medicin

    SARS-CoV-2 Omicron triggers cross-reactive neutralization and Fc effector functions in previously vaccinated, but not unvaccinated, individuals

    Get PDF
    The SARS-CoV-2 Omicron variant escapes neutralizing antibodies elicited by vaccines or infection. However, whether Omicron triggers cross-reactive humoral responses to other variants of concern (VOCs) remains unknown. We used plasma from 20 unvaccinated and 7 vaccinated individuals infected by Omicron BA.1 to test binding, Fc effector function, and neutralization against VOCs. In unvaccinated individuals, Fc effector function and binding antibodies targeted Omicron and other VOCs at comparable levels. However, Omicron BA.1- triggered neutralization was not extensively cross-reactive for VOCs (14- to 31-fold titer reduction), and we observed 4-fold decreased titers against Omicron BA.2. In contrast, vaccination followed by breakthrough Omicron infection associated with improved cross-neutralization of VOCs with titers exceeding 1:2,100. This has important implications for the vulnerability of unvaccinated Omicron-infected individuals to reinfection by circulating and emerging VOCs. Although Omicron-based immunogens might be adequate boosters, they are unlikely to be superior to existing vaccines for priming in SARS-CoV-2-naive individuals.The South African Research Chairs Initiative of the Department of Science and Innovation, the National Research Foundation of South Africa, the South African Medical Research Council Strategic Health Innovation Partnerships (SHIP) program, the Centre for the AIDS Programme of Research in South Africa (CAPRISA), the Bill and Melinda Gates Foundation through the Global Immunology and Immune Sequencing for Epidemic Response (GIISER) program and L’Oreal/UNESCO Women in Science South Africa Young Talents award.http://www.cell.com/cell-host-microbe/homeam2023ImmunologyMedical Virolog

    Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in people living with and without HIV in South Africa: an interim analysis of a randomised, double-blind, placebo-controlled, phase 1B/2A trial.

    Get PDF
    BACKGROUND: People living with HIV are at an increased risk of fatal outcome when admitted to hospital for severe COVID-19 compared with HIV-negative individuals. We aimed to assess safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine in people with HIV and HIV-negative individuals in South Africa. METHODS: In this ongoing, double-blind, placebo-controlled, phase 1B/2A trial (COV005), people with HIV and HIV-negative participants aged 18-65 years were enrolled at seven South African locations and were randomly allocated (1:1) with full allocation concealment to receive a prime-boost regimen of ChAdOx1 nCoV-19, with two doses given 28 days apart. Eligibility criteria for people with HIV included being on antiretroviral therapy for at least 3 months, with a plasma HIV viral load of less than 1000 copies per mL. In this interim analysis, safety and reactogenicity was assessed in all individuals who received at least one dose of ChAdOx1 nCov 19 between enrolment and Jan 15, 2021. Primary immunogenicity analyses included participants who received two doses of trial intervention and were SARS-CoV-2 seronegative at baseline. This trial is registered with ClinicalTrials.gov, NCT04444674, and the Pan African Clinicals Trials Registry, PACTR202006922165132. FINDINGS: Between June 24 and Nov 12, 2020, 104 people with HIV and 70 HIV-negative individuals were enrolled. 102 people with HIV (52 vaccine; 50 placebo) and 56 HIV-negative participants (28 vaccine; 28 placebo) received the priming dose, 100 people with HIV (51 vaccine; 49 placebo) and 46 HIV-negative participants (24 vaccine; 22 placebo) received two doses (priming and booster). In participants seronegative for SARS-CoV-2 at baseline, there were 164 adverse events in those with HIV (86 vaccine; 78 placebo) and 237 in HIV-negative participants (95 vaccine; 142 placebo). Of seven serious adverse events, one severe fever in a HIV-negative participant was definitely related to trial intervention and one severely elevated alanine aminotranferase in a participant with HIV was unlikely related; five others were deemed unrelated. One person with HIV died (unlikely related). People with HIV and HIV-negative participants showed vaccine-induced serum IgG responses against wild-type Wuhan-1 Asp614Gly (also known as D614G). For participants seronegative for SARS-CoV-2 antigens at baseline, full-length spike geometric mean concentration (GMC) at day 28 was 163·7 binding antibody units (BAU)/mL (95% CI 89·9-298·1) for people with HIV (n=36) and 112·3 BAU/mL (61·7-204·4) for HIV-negative participants (n=23), with a rising day 42 GMC booster response in both groups. Baseline SARS-CoV-2 seropositive people with HIV demonstrated higher antibody responses after each vaccine dose than did people with HIV who were seronegative at baseline. High-level binding antibody cross-reactivity for the full-length spike and receptor-binding domain of the beta variant (B.1.351) was seen regardless of HIV status. In people with HIV who developed high titre responses, predominantly those who were receptor-binding domain seropositive at enrolment, neutralising activity against beta was retained. INTERPRETATION: ChAdOx1 nCoV-19 was well tolerated, showing favourable safety and immunogenicity in people with HIV, including heightened immunogenicity in SARS-CoV-2 baseline-seropositive participants. People with HIV showed cross-reactive binding antibodies to the beta variant and Asp614Gly wild-type, and high responders retained neutralisation against beta. FUNDING: The Bill & Melinda Gates Foundation, South African Medical Research Council, UK Research and Innovation, UK National Institute for Health Research, and the South African Medical Research Council
    corecore