157 research outputs found

    Method and Compositions for Biofouling Deterrence

    Get PDF
    A method of deterring biofouling of a surface comprising attaching an adduct having formula (I) or noradrenalin to the surface. Formula (I) being defined as compounds that have the formula A-L-R wherein A is i) a C6 or C10 substituted aryl ring, or ii) a C1-C9 substituted or unsubstituted heteroaryl ring: L is a linking group, and R is a primary amino moiety comprising unit

    Assessment of Oyster Shell Structural Properties for the Development of \u27Green\u27 Composite Materials

    Get PDF
    Abstract of Technical Paper Presented at the 101st Annual Meeting National Shellfisheries Association Savannah, Georgia March 22–26, 200

    Deposition of nanocrystalline calcite on surfaces by a tissue and cellular biomineralization

    Get PDF
    Disclosed are articles comprising layered nanocrystalline calcite and methods for forming nanocrystalline calcite layers and compositions comprising nanocrystalline calcite layers

    The Mineralization Front of the Eastern Oyster is Cellular

    Get PDF
    Abstract of Technical Paper Presented at the 101st Annual Meeting National Shellfisheries Association Savannah, Georgia March 22–26, 200

    Towards Biomimetic Ceramic Coatings: Cellular Aspects of Oyster Shell Biomineralization

    Get PDF
    Abstract of Technical Paper Presented at the 101st Annual Meeting National Shellfisheries Association Savannah, Georgia March 22–26, 200

    Deposition of nanocrystalline calcite on surfaces by a tissue and cellular biomineralization

    Get PDF
    Disclosed are articles comprising layered nanocrystalline calcite and methods for forming nanocrystalline calcite layers and compositions comprising nanocrystalline calcite layers

    Folian-cv1 Is a Member of a Highly Acidic Phosphoprotein Class Derived From the Foliated Layer of the Eastern Oyster (\u3ci\u3eCrassostrea virginica\u3c/i\u3e) Shell and Identified in Hemocytes and Mantle

    Get PDF
    The proteins derived from the foliated shell layer of the oyster, Crassostrea virginica, are unusually acidic and highly phosphorylated. Here we report the identification of a gene encoding a member of this class of phosphoproteins that we collectively refer to as folian. Using an in silico approach, a virtual probe was constructed from an N-terminal sequence (DEADAGD) determined for a 48 kDa folian phosphoprotein and used to screen an oyster EST databank. A sequence that matched the N-terminus of the 48 kDa protein was found and used to identify the full-length gene from a C. virginica BAC library. The molecular weight of the deduced gene product is 32 kDa and was named folian-cv1. Genomic Southern analysis revealed two variants of the gene. The mature protein is composed of 43.3% Asp, 32.6% Ser, and 9.1% Glu with 37.5% of the amino acids of the protein potentially phosphorylated. The primary sequence of folian-cv1 is organized in blocks, with a short relatively hydrophobic block at the N-terminus and with the remainder containing low complexity regions largely dominated by aspartic acid and serine. Overall, the protein is predicted to be highly disordered. PCR and sequence analyses identified folian-cv1 expression in the mantle and hemocytes. Immuno-histochemical staining of mantle tissue reveals that cells of the shell-facing epithelium and in the periostracal groove secrete a continuous layer of folian-positive material and that folian-positive hemocytes move through the mantle epithelium. The function in shell formation of folian proteins including folian-cv1 is not known. However, based on the complexity of this class of proteins and the two methods of their delivery to the region of shell formation, it is possible they are involved in diverse ways in this process

    Chitin Facilitated Mineralization in the Eastern Oyster

    Get PDF
    Chitin is often reported in molluscan shells, where it likely contributes to the mechanical strength of the biomineral. However, the role of this polysaccharide in relation to the process of shell formation is not well understood. We investigated the deposition of chitin during shell repair in the Eastern oyster, Crassostrea virginica, by inserting stainless steel and glass implants in a region of shell damage. This work documents the time course of deposition of both chitin fibrils and calcium carbonate layers. Chitin was detected by confocal laser scanning microscopy (CLSM) using a chitin-specific fluorescent probe that was produced from clones of a chitin-binding domain. The presence of fibrils was confirmed using electron microscopy of implants. The fibrils’ dimensions were reduced after treatment with both acid and bleach, suggesting that chitin interacts with inorganic minerals and other organic components such as proteins and lipids as early as 5 h after shell damage. With CLSM, it was shown that chitin co-localized with the cell membrane, suggesting the importance of cells located on the implants in the process of fibril formation. Using observations from this study as well as those from the literature on chitin synthase production, we propose two cellular models for chitin deposition related to shell formation
    • …
    corecore