20 research outputs found

    Assessing Versatile Machine Learning Models for Glioma Radiogenomic Studies across Hospitals

    Get PDF
    Radiogenomics use non-invasively obtained imaging data, such as magnetic resonance imaging (MRI), to predict critical biomarkers of patients. Developing an accurate machine learning (ML) technique for MRI requires data from hundreds of patients, which cannot be gathered from any single local hospital. Hence, a model universally applicable to multiple cohorts/hospitals is required. We applied various ML and image pre-processing procedures on a glioma dataset from The Cancer Image Archive (TCIA, n = 159). The models that showed a high level of accuracy in predicting glioblastoma or WHO Grade II and III glioma using the TCIA dataset, were then tested for the data from the National Cancer Center Hospital, Japan (NCC, n = 166) whether they could maintain similar levels of high accuracy. Results: we confirmed that our ML procedure achieved a level of accuracy (AUROC = 0.904) comparable to that shown previously by the deep-learning methods using TCIA. However, when we directly applied the model to the NCC dataset, its AUROC dropped to 0.383. Introduction of standardization and dimension reduction procedures before classification without re-training improved the prediction accuracy obtained using NCC (0.804) without a loss in prediction accuracy for the TCIA dataset. Furthermore, we confirmed the same tendency in a model for IDH1/2 mutation prediction with standardization and application of dimension reduction that was also applicable to multiple hospitals. Our results demonstrated that overfitting may occur when an ML method providing the highest accuracy in a small training dataset is used for different heterogeneous data sets, and suggested a promising process for developing an ML method applicable to multiple cohort

    Preoperative T staging using CT colonography with multiplanar reconstruction for very low rectal cancer

    No full text
    Abstract Background Preoperative T staging of lower rectal cancer is an important criterion for selecting intersphincteric resection (ISR) or abdominoperineal resection (APR) as well as selecting neoadjuvant therapy. The aim of this study was to evaluate the accuracy of preoperative T staging using CT colonography (CTC) with multiplanar reconstruction (MPR), in which with the newest workstation the images can be analyzed with a slice thickness of 0.5 mm. Methods Between 2011 and 2013, 45 consecutive patients with very low rectal adenocarcinoma underwent CTC with MPR. The accuracy of preoperative T staging using CTC with MPR was evaluated. The accuracy of preoperative T staging using MRI in the same patient population (34 of 45 patients) was also examined. Results Overall accuracy of T staging was 89% (41/45) for CTC with MPR and 71% (24/34) for MRI. CTC with MPR was particularly sensitive for pT2 tumors (82%; 14/17), whereas MRI tended to overstage pT2 tumors and its sensitivity for pT2 was 53% (8/15). Conclusions CTC with MPR, with an arbitrary selection, could be aligned to the tumor axis and better demonstrated tumor margins consecutively including the deepest section of the tumor. The accuracy of T2 and T3 staging using CTC with MPR seemed to surpass that of MRI, suggesting a potential role of CTC with MPR in preoperative T staging for very low rectal cancer

    Adenocarcinoma in ectopic prostatic tissue at the trigone of urinary bladder

    No full text
    Introduction Ectopic prostatic tissue is prostatic tissue located distant from the prostate gland. Although its existence is not uncommon, the occurrence of adenocarcinoma in ectopic prostatic tissue is rare. Case presentation A 68‐year‐old man was suspected to have a nodular‐type tumor in the bladder trigone and a tumor in the prostate based on magnetic resonance imaging and cystoscopy results. Transurethral tumor resection and transrectal prostate needle biopsy revealed the coexistence of ectopic prostatic adenocarcinoma in the bladder trigone and low‐risk orthotopic prostate cancer. Four years later, the tumor evolved to intermediate‐risk prostate cancer during active surveillance, and the patient underwent prostatectomy with resection of the bladder trigone. Pathology indicated no residual ectopic prostatic tissue or adenocarcinoma at the bladder trigone. Conclusion Adenocarcinoma in ectopic prostatic tissue is very rare; however, when found, the possibility of concurrent cancer in the prostate gland should be considered

    A New Era of Neuro-Oncology Research Pioneered by Multi-Omics Analysis and Machine Learning

    No full text
    Although the incidence of central nervous system (CNS) cancers is not high, it significantly reduces a patient’s quality of life and results in high mortality rates. A low incidence also means a low number of cases, which in turn means a low amount of information. To compensate, researchers have tried to increase the amount of information available from a single test using high-throughput technologies. This approach, referred to as single-omics analysis, has only been partially successful as one type of data may not be able to appropriately describe all the characteristics of a tumor. It is presently unclear what type of data can describe a particular clinical situation. One way to solve this problem is to use multi-omics data. When using many types of data, a selected data type or a combination of them may effectively resolve a clinical question. Hence, we conducted a comprehensive survey of papers in the field of neuro-oncology that used multi-omics data for analysis and found that most of the papers utilized machine learning techniques. This fact shows that it is useful to utilize machine learning techniques in multi-omics analysis. In this review, we discuss the current status of multi-omics analysis in the field of neuro-oncology and the importance of using machine learning techniques
    corecore