258 research outputs found

    A time-resolution study with a plastic scintillator read out by a Geiger-mode Avalanche Photodiode

    Full text link
    In this work we attempt to establish the best time resolution attainable with a scintillation counter consisting of a plastic scintillator read out by a Geiger-mode Avalanche Photodiode. The measured time resolution is inversely proportional to the square root of the energy deposited in the scintillator, and scales to 18ps (sigma) at 1MeV. This result competes with the best ones reported for photomultiplier tubes.Comment: 8 pages, 8 figure

    Long-range interactions between an atom in its ground S state and an open-shell linear molecule

    Full text link
    Theory of long-range interactions between an atom in its ground S state and a linear molecule in a degenerate state with a non-zero projection of the electronic orbital angular momentum is presented. It is shown how the long-range coefficients can be related to the first and second-order molecular properties. The expressions for the long-range coefficients are written in terms of all components of the static and dynamic multipole polarizability tensor, including the nonadiagonal terms connecting states with the opposite projection of the electronic orbital angular momentum. It is also shown that for the interactions of molecules in excited states that are connected to the ground state by multipolar transition moments additional terms in the long-range induction energy appear. All these theoretical developments are illustrated with the numerical results for systems of interest for the sympathetic cooling experiments: interactions of the ground state Rb(2^2S) atom with CO(3Π^3\Pi), OH(2Π^2\Pi), NH(1Δ^1\Delta), and CH(2Π^2\Pi) and of the ground state Li(2^2S) atom with CH(2Π^2\Pi).Comment: 30 pages, 3 figure

    Precise study of asymptotic physics with subradiant ultracold molecules

    Get PDF
    Weakly bound molecules have physical properties without atomic analogues, even as the bond length approaches dissociation. In particular, the internal symmetries of homonuclear diatomic molecules result in formation of two-body superradiant and subradiant excited states. While superradiance has been demonstrated in a variety of systems, subradiance is more elusive due to the inherently weak interaction with the environment. Here we characterize the properties of deeply subradiant molecular states with intrinsic quality factors exceeding 101310^{13} via precise optical spectroscopy with the longest molecule-light coherent interaction times to date. We find that two competing effects limit the lifetimes of the subradiant molecules, with different asymptotic behaviors. The first is radiative decay via weak magnetic-dipole and electric-quadrupole interactions. We prove that its rate increases quadratically with the bond length, confirming quantum mechanical predictions. The second is nonradiative decay through weak gyroscopic predissociation, with a rate proportional to the vibrational mode spacing and sensitive to short-range physics. This work bridges the gap between atomic and molecular metrology based on lattice-clock techniques, yielding new understanding of long-range interatomic interactions and placing ultracold molecules at the forefront of precision measurements.Comment: 12 pages, 6 figure

    THERMAL CONDUCTIVITY OF THE HELIUM-ARGON SYSTEM

    Get PDF
    NOTIC
    • …
    corecore