33 research outputs found

    Harnessing case isolation and ring vaccination to control Ebola.

    Get PDF
    As a devastating Ebola outbreak in West Africa continues, non-pharmaceutical control measures including contact tracing, quarantine, and case isolation are being implemented. In addition, public health agencies are scaling up efforts to test and deploy candidate vaccines. Given the experimental nature and limited initial supplies of vaccines, a mass vaccination campaign might not be feasible. However, ring vaccination of likely case contacts could provide an effective alternative in distributing the vaccine. To evaluate ring vaccination as a strategy for eliminating Ebola, we developed a pair approximation model of Ebola transmission, parameterized by confirmed incidence data from June 2014 to January 2015 in Liberia and Sierra Leone. Our results suggest that if a combined intervention of case isolation and ring vaccination had been initiated in the early fall of 2014, up to an additional 126 cases in Liberia and 560 cases in Sierra Leone could have been averted beyond case isolation alone. The marginal benefit of ring vaccination is predicted to be greatest in settings where there are more contacts per individual, greater clustering among individuals, when contact tracing has low efficacy or vaccination confers post-exposure protection. In such settings, ring vaccination can avert up to an additional 8% of Ebola cases. Accordingly, ring vaccination is predicted to offer a moderately beneficial supplement to ongoing non-pharmaceutical Ebola control efforts

    Retrospective Analysis of the 2014-2015 Ebola Epidemic in Liberia.

    Get PDF
    The 2014-2015 Ebola epidemic has been the most protracted and devastating in the history of the disease. To prevent future outbreaks on this scale, it is imperative to understand the reasons that led to eventual disease control. Here, we evaluated the shifts of Ebola dynamics at national and local scales during the epidemic in Liberia. We used a transmission model calibrated to epidemiological data between June 9 and December 31, 2014, to estimate the extent of community and hospital transmission. We found that despite varied local epidemic patterns, community transmission was reduced by 40-80% in all the counties analyzed. Our model suggests that the tapering of the epidemic was achieved through reductions in community transmission, rather than accumulation of immune individuals through asymptomatic infection and unreported cases. Although the times at which this transmission reduction occurred in the majority of the Liberian counties started before any large expansion in hospital capacity and the distribution of home protection kits, it remains difficult to associate the presence of interventions with reductions in Ebola incidence

    Community-Centered Responses to Ebola in Urban Liberia: The View from Below

    No full text
    The West African Ebola epidemic has demonstrated that the existing range of medical and epidemiological responses to emerging disease outbreaks is insufficient, especially in post-conflict contexts with exceedingly poor healthcare infrastructures. This study provides baseline information on community-based epidemic control priorities and identifies innovative local strategies for containing EVD in Liberia.In this study the authors analyzed data from the 2014 Ebola outbreak in Monrovia and Montserrado County, Liberia. The data were collected for the purposes of program design and evaluation by the World Health Organization (WHO) and the Government of Liberia (GOL), in order to identify: (1) local knowledge about EVD, (2) local responses to the outbreak, and (3) community based innovations to contain the virus. At the time of data collection, the international Ebola response had little insight into how much local Liberian communities knew about Ebola, and how communities managed the epidemic when they could not get access to care due to widespread hospital and clinic closures. Methods included 15 focus group discussions with community leaders from areas with active Ebola cases. Participants were asked about best practices and what they were currently doing to manage EVD in their respective communities, with the goal of developing conceptual models of local responses informed by local narratives. Findings reveal that communities responded to the outbreak in numerous ways that both supported and discouraged formal efforts to contain the spread of the disease. This research will inform global health policy for both this, and future, epidemic and pandemic responses

    Feasibility of digital contact tracing in low-income settings – pilot trial for a location-based DCT app

    No full text
    Abstract Background Data about the effectiveness of digital contact tracing are based on studies conducted in countries with predominantly high- or middle-income settings. Up to now, little research is done to identify specific problems for the implementation of such technique in low-income countries. Methods A Bluetooth-assisted GPS location-based digital contact tracing (DCT) app was tested by 141 participants during 14 days in a hospital in Monrovia, Liberia in February 2020. The DCT app was compared to a paper-based reference system. Hits between participants and 10 designated infected participants were recorded simultaneously by both methods. Additional data about GPS and Bluetooth adherence were gathered and surveys to estimate battery consumption and app adherence were conducted. DCT apps accuracy was evaluated in different settings. Results GPS coordinates from 101/141 (71.6%) participants were received. The number of hours recorded by the participants during the study period, true Hours Recorded (tHR), was 496.3 h (1.1% of maximum Hours recordable) during the study period. With the paper-based method 1075 hits and with the DCT app five hits of designated infected participants with other participants have been listed. Differences between true and maximum recording times were due to failed permission settings (45%), data transmission issues (11.3%), of the participants 10.1% switched off GPS and 32.5% experienced other technical or compliance problems. In buildings, use of Bluetooth increased the accuracy of the DCT app (GPS + BT 22.9 m ± 21.6 SD vs. GPS 60.9 m ± 34.7 SD; p = 0.004). GPS accuracy in public transportation was 10.3 m ± 10.05 SD with a significant (p = 0.007) correlation between precision and phone brand. GPS resolution outdoors was 10.4 m ± 4.2 SD. Conclusion In our study several limitations of the DCT together with the impairment of GPS accuracy in urban settings impede the solely use of a DCT app. It could be feasible as a supplement to traditional manual contact tracing. DKRS, DRKS00029327 . Registered 20 June 2020 - Retrospectively registered

    Quantifying Poverty as a Driver of Ebola Transmission

    No full text
    <div><p>Background</p><p>Poverty has been implicated as a challenge in the control of the current Ebola outbreak in West Africa. Although disparities between affected countries have been appreciated, disparities within West African countries have not been investigated as drivers of Ebola transmission. To quantify the role that poverty plays in the transmission of Ebola, we analyzed heterogeneity of Ebola incidence and transmission factors among over 300 communities, categorized by socioeconomic status (SES), within Montserrado County, Liberia.</p><p>Methodology/Principal Findings</p><p>We evaluated 4,437 Ebola cases reported between February 28, 2014 and December 1, 2014 for Montserrado County to determine SES-stratified temporal trends and drivers of Ebola transmission. A dataset including dates of symptom onset, hospitalization, and death, and specified community of residence was used to stratify cases into high, middle and low SES. Additionally, information about 9,129 contacts was provided for a subset of 1,585 traced individuals. To evaluate transmission within and across socioeconomic subpopulations, as well as over the trajectory of the outbreak, we analyzed these data with a time-dependent stochastic model. Cases in the most impoverished communities reported three more contacts on average than cases in high SES communities (p<0.001). Our transmission model shows that infected individuals from middle and low SES communities were associated with 1.5 (95% CI: 1.4–1.6) and 3.5 (95% CI: 3.1–3.9) times as many secondary cases as those from high SES communities, respectively. Furthermore, most of the spread of Ebola across Montserrado County originated from areas of lower SES.</p><p>Conclusions/Significance</p><p>Individuals from areas of poverty were associated with high rates of transmission and spread of Ebola to other regions. Thus, Ebola could most effectively be prevented or contained if disease interventions were targeted to areas of extreme poverty and funding was dedicated to development projects that meet basic needs.</p></div

    Key factors of Ebola transmission based on socioeconomic status (SES) of probable and confirmed cases<sup>1</sup>.

    No full text
    <p>Key factors of Ebola transmission based on socioeconomic status (SES) of probable and confirmed cases<a href="http://www.plosntds.org/article/info:doi/10.1371/journal.pntd.0004260#t002fn001" target="_blank"><sup>1</sup></a>.</p
    corecore