112 research outputs found

    Canal wall reconstruction and mastoid obliteration with composite multi-fractured osteoperiosteal flap

    Get PDF
    We used inferior pedicled composite multi-fractured osteoperiosteal flap (CMOF), our original and new surgical approach, to obliterate the mastoid cavity and reconstruct the external auditory canal (EAC) to prevent the open cavity problems. CMOF was used to obliterate the mastoid cavity and reconstruct the EAC in 24 patients (13 women, 11 men; age span 12–51Β years) who underwent radical mastoidectomy to treat the chronic otitis media between 1998 and 2004. Small meatoplasty was done in all 24 patients to relive their aesthetical concerns. Temporal bone CT scanning was done to observe the neo-osteogenesis in the mastoidectomy cavity and the CMOF, and the EAC volume was measured postoperatively. All our patients were followed-up for 2Β years. The epithelization of the new EAC in our patients was complete at the end of the second month. Cholesteatoma, granulation, and recurrence of osteitis did not occur in any of the patients. We saw the new bone formation filling the mastoid cavity in the postoperative temporal bone CT scanning images. The mean volume of the new EAC on the 24th month was 1.83Β Β±Β 0.56Β cm(3). We had an almost natural EAC, which owed its existence to the neo-osteogenesis that grows behind the CMOF, which we use to obliterate the mastoid cavity and to reconstruct the EAC

    MR imaging of osteochondral grafts and autologous chondrocyte implantation

    Get PDF
    Surgical articular cartilage repair therapies for cartilage defects such as osteochondral autograft transfer, autologous chondrocyte implantation (ACI) or matrix associated autologous chondrocyte transplantation (MACT) are becoming more common. MRI has become the method of choice for non-invasive follow-up of patients after cartilage repair surgery. It should be performed with cartilage sensitive sequences, including fat-suppressed proton density-weighted T2 fast spin-echo (PD/T2-FSE) and three-dimensional gradient-echo (3D GRE) sequences, which provide good signal-to-noise and contrast-to-noise ratios. A thorough magnetic resonance (MR)-based assessment of cartilage repair tissue includes evaluations of defect filling, the surface and structure of repair tissue, the signal intensity of repair tissue and the subchondral bone status. Furthermore, in osteochondral autografts surface congruity, osseous incorporation and the donor site should be assessed. High spatial resolution is mandatory and can be achieved either by using a surface coil with a 1.5-T scanner or with a knee coil at 3 T; it is particularly important for assessing graft morphology and integration. Moreover, MR imaging facilitates assessment of complications including periosteal hypertrophy, delamination, adhesions, surface incongruence and reactive changes such as effusions and synovitis. Ongoing developments include isotropic 3D sequences, for improved morphological analysis, and in vivo biochemical imaging such as dGEMRIC, T2 mapping and diffusion-weighted imaging, which make functional analysis of cartilage possible

    Meniscal T1rho and T2 measured with 3.0T MRI increases directly after running a marathon

    Get PDF
    PURPOSE: To prospectively evaluate changes in T1rho and T2 relaxation time in the meniscus using 3.0Β T MRI in asymptomatic knees of marathon runners and to compare these findings with those of age-matched healthy subjects. MATERIAL AND METHODS: Thirteen marathon runners underwent 3.0Β T MRI including T1rho and T2 mapping sequences before, 48-72Β h after, and 3Β months after competition. Ten controls were examined at baseline and after 3Β months. All images were analyzed by two musculoskeletal radiologists identifying and grading cartilage, meniscal, ligamentous. and other knee abnormalities with WORMS scores. Meniscal segmentation was performed to generate T1rho and T2 maps in six compartments. RESULTS: No differences in morphological knee abnormalities were found before and after the marathon. However, all marathon runners showed a significant increase in T1rho and T2 values after competition in all meniscus compartments (p < 0.0001), which may indicate changes in the biochemical composition of meniscal tissue. While T2 values decreased after 3Β months T1rho values remained at a high level, indicating persisting changes in the meniscal matrix composition after a marathon. CONCLUSION: T2 values in menisci have the potential to be used as biomarkers for identifying reversible meniscus matrix changes indicating potential tissue damage. T1rho values need further study, but may be a valuable marker for diagnosing early, degenerative changes in the menisci following exercise

    T2 Values of Posterior Horns of Knee Menisci in Asymptomatic Subjects

    Get PDF
    [[abstract]]Purpose: The magnetic resonance (MR) T2 value of cartilage is a reliable indicator of tissue properties and therefore may be used as an objective diagnostic tool in early meniscal degeneration. The purpose of this study was to investigate age, gender, location, and zonal differences in MR T2 value of the posterior horns of knee menisci in asymptomatic subjects. Methods: Sixty asymptomatic volunteers (30 men and 30 women) were enrolled and divided into three different age groups: 20–34, 35–49 and 50–70 years. The inclusion criteria were BMI<30 kg/cm2, normalized Western Ontario and McMaster Universities (WOMAC) pain score of zero, and no evidence of meniscal and ligamentous abnormalities on routine knee MR imaging. The T2 values were measured on images acquired with a T2-weighted fat-suppressed turbo spin-echo sequence at 3T. Results: The mean T2 values in both medial and lateral menisci for the 20–34, 35–49, and 50–70 age groups were 9.94 msecΒ±0.94, 10.73 msecΒ±1.55, and 12.36 msecΒ±2.27, respectively, for women and 9.17 msecΒ±0.74, 9.64 msecΒ±0.67, and 10.95 msecΒ±1.33, respectively, for men. The T2 values were significantly higher in the 50–70 age group than the 20–34 age group (P<0.001) and in women than in men (Pβ€Š=β€Š0.001, 0.004, and 0.049 for each respective age group). T2 values were significantly higher in medial menisci than in lateral menisci only in women age 50–70 (3.33 msec, Pβ€Š=β€Š0.006) and in the white zone and red/white zone of the 50–70 and 35–49 age groups than that of the 20–34 age group (2.47, 1.02; 2.77, 1.16 msec, respectively, all P<0.01). Conclusion: The MR T2 values of the posterior meniscal horns increase with increasing age in women and are higher in women than in men. The age-related rise of T2 values appears to be more severe in medial menisci than in lateral menisci. Differences exist in the white zone and red/white zone.[[incitationindex]]SCI[[booktype]]電子

    Analyzing and Mapping Sweat Metabolomics by High-Resolution NMR Spectroscopy

    Get PDF
    The content of human sweat is studied by high-resolution NMR, and the majority of organic components most often found in sweat of conditionally healthy people are identified. Original and simple tools are designed for sweat sampling from different areas of human body. The minimal surface area needed for sampling is in the range of 50–100 cm2. On all the surface parts of the human body examined in this work, the main constituents forming a sweat metabolic profile are lactate, glycerol, pyruvate, and serine. The only exception is the sole of the foot (planta pedis), where trace amounts of glycerol are found. An attempt is made to explain the presence of specified metabolites and their possible origin

    A genome-wide screen in human embryonic stem cells reveals novel sites of allele-specific histone modification associated with known disease loci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromatin structure at a given site can differ between chromosome copies in a cell, and such imbalances in chromatin structure have been shown to be important in understanding the molecular mechanisms controlling several disease loci. Human genetic variation, DNA methylation, and disease have been intensely studied, uncovering many sites of allele-specific DNA methylation (ASM). However, little is known about the genome-wide occurrence of sites of allele-specific histone modification (ASHM) and their relationship to human disease. The aim of this study was to investigate the extent and characteristics of sites of ASHM in human embryonic stem cells (hESCs).</p> <p>Results</p> <p>Using a statistically rigorous protocol, we investigated the genomic distribution of ASHM in hESCs, and their relationship to sites of allele-specific expression (ASE) and DNA methylation. We found that, although they were rare, sites of ASHM were substantially enriched at loci displaying ASE. Many were also found at known imprinted regions, hence sites of ASHM are likely to be better markers of imprinted regions than sites of ASM. We also found that sites of ASHM and ASE in hESCs colocalize at risk loci for developmental syndromes mediated by deletions, providing insights into the etiology of these disorders.</p> <p>Conclusion</p> <p>These results demonstrate the potential importance of ASHM patterns in the interpretation of disease loci, and the protocol described provides a basis for similar studies of ASHM in other cell types to further our understanding of human disease susceptibility.</p

    The Founder’s Lecture 2009: advances in imaging of osteoporosis and osteoarthritis

    Get PDF
    The objective of this review article is to provide an update on new developments in imaging of osteoporosis and osteoarthritis over the past three decades. A literature review is presented that summarizes the highlights in the development of bone mineral density measurements, bone structure imaging, and vertebral fracture assessment in osteoporosis as well as MR-based semiquantitative assessment of osteoarthritis and quantitative cartilage matrix imaging. This review focuses on techniques that have impacted patient management and therapeutic decision making or that potentially will affect patient care in the near future. Results of pertinent studies are presented and used for illustration. In summary, novel developments have significantly impacted imaging of osteoporosis and osteoarthritis over the past three decades

    Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications

    Get PDF
    Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging

    Action of thrombin on surface glycoproteins of human platelets

    No full text

    Action of thrombin on surface glycoproteins of human platelets

    No full text
    • …
    corecore