35 research outputs found

    Impact of Ceftolozane-Tazobactam vs. Best Alternative Therapy on Clinical Outcomes in Patients with Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Lower Respiratory Tract Infections

    Get PDF
    INTRODUCTION: Infections caused by multidrug-resistant (MDR), extensively drug-resistant (XDR), and difficult-to-treat (DTR) Pseudomonas aeruginosa are increasingly challenging to combat. Ceftolozane-tazobactam (C/T) is a novel β-lactam-β-lactamase inhibitor combination now commonly used to treat MDR and XDR P. aeruginosa. Lower respiratory tract infections (LRTIs) remain the most common source of infection caused by MDR/XDR P. aeruginosa. Comparative effectiveness studies to date have been limited by the type of comparator agents (i.e., aminoglycosides and polymyxins) and the inclusion of multiple infection sources (i.e., urinary tract, abdominal, skin and soft tissue, etc.). METHODS: We performed a multicenter, retrospective analysis of adults with LRTI caused by MDR or XDR P. aeruginosa admitted from January 2014 to December 2019. We aimed to compare clinical outcomes between patients who received C/T (n = 118) versus best alternative therapy (n = 88). The primary outcome was clinical failure, defined as 30-day mortality and/or an adverse drug reaction on antibiotic therapy. RESULTS: Two hundred and six patients met inclusion criteria. The C/T group had a significantly higher proportion of XDR P. aeruginosa and ventilator-associated bacterial pneumonia (VABP). After multivariable logistic regression, C/T treatment was independently associated with a 73.3% reduction in clinical failure compared to those who received best alternative therapy (P \u3c 0.001). The number needed to harm with best alternative therapy was 3. CONCLUSION: Our results suggest that C/T is a safe and effective therapeutic regimen for patients with MDR and XDR P. aeruginosa LRTI

    Clinical Characteristics Associated with Bacterial Bloodstream Coinfection in COVID-19

    Get PDF
    INTRODUCTION: Inappropriate antibiotic use in COVID-19 is often due to treatment of presumed bacterial coinfection. Predictive factors to distinguish COVID-19 from COVID-19 with bacterial coinfection or bloodstream infection are limited. METHODS: We conducted a retrospective cohort study of 595 COVID-19 patients admitted between March 8, 2020, and April 4, 2020, to describe factors associated with a bacterial bloodstream coinfection (BSI). The primary outcome was any characteristic associated with BSI in COVID-19, with secondary outcomes including 30-day mortality and days of antibiotic therapy (DOT) by antibiotic consumption (DOT/1000 patient-days). Variables of interest were compared between true BSI (n = 25) and all other COVID-19 cases (n = 570). A secondary comparison was performed between positive blood cultures with true BSI (n = 25) and contaminants (n = 33) on antibiotic use. RESULTS: Fever (\u3e 38 °C) (as a COVID-19 symptom) was not different between true BSI (n = 25) and all other COVID-19 patients (n = 570) (p = 0.93), although it was different as a reason for emergency department (ED) admission (p = 0.01). Neurological symptoms (ED reason or COVID-19 symptom) were significantly higher in the true BSI group (p \u3c 0.01, p \u3c 0.01) and were independently associated with true BSI (ED reason: OR = 3.27, p \u3c 0.01; COVID-19 symptom: OR = 2.69, p = 0.03) on multivariate logistic regression. High (15-19.9 × 10(9)/L) white blood cell (WBC) count at admission was also higher in the true BSI group (p \u3c 0.01) and was independently associated with true BSI (OR = 2.56, p = 0.06) though was not statistically significant. Thirty-day mortality was higher among true BSI (p \u3c 0.01). Antibiotic consumption (DOT/1000 patient-days) between true BSI and contaminants was not different (p = 0.34). True bloodstream coinfection was 4.2% (25/595) over the 28-day period. CONCLUSION: True BSI in COVID-19 was associated with neurological symptoms and nonsignificant higher WBC, and led to overall higher 30-day mortality and worse patient outcomes

    Evaluation of the INCREMENT-CPE, Pitt Bacteremia and qPitt Scores in Patients with Carbapenem-Resistant Enterobacteriaceae Infections Treated with Ceftazidime–Avibactam

    Get PDF
    Background The aim of this study was to evaluate the predictive performance of the INCREMENT-CPE (ICS), Pitt bacteremia score (PBS) and qPitt for mortality among patients treated with ceftazidime–avibactam for carbapenem-resistant Enterobacteriaceae (CRE) infections. Methods Retrospective, multicenter, cohort study of patients with CRE infections treated with ceftazidime–avibactam between 2015 and 2019. The primary outcome was 30-day all-cause mortality. Predictive performance was determined by assessing discrimination, calibration and precision. Results In total, 109 patients were included. Thirty-day mortality occurred in 18 (16.5%) patients. There were no significant differences in discrimination of the three scores [area under the curve (AUC) ICS 0.7039, 95% CI 0.5848–0.8230, PBS 0.6893, 95% CI 0.5709–0.8076, and qPitt 0.6847, 95% CI 0.5671–0.8023; P > 0.05 all pairwise comparisons]. All scores showed adequate calibration and precision. When dichotomized at the optimal cut-points of 11, 3, and 2 for the ICS, PBS, and qPitt, respectively, all scores had NPV > 90% at the expense of low PPV. Patients in the high-risk groups had a relative risk for mortality of 3.184 (95% CI 1.35–8.930), 3.068 (95% CI 1.094–8.606), and 2.850 (95% CI 1.016–7.994) for the dichotomized ICS, PBS, and qPitt, scores respectively. Treatment-related variables (early active antibiotic therapy, combination antibiotics and renal ceftazidime–avibactam dose adjustment) were not associated with mortality after controlling for the risk scores. Conclusions In patients treated with ceftazidime–avibactam for CRE infections, mortality risk scores demonstrated variable performance. Modifications to scoring systems to more accurately predict outcomes in the era of novel antibiotics are warranted

    Real-world, Multicenter Experience With Meropenem-Vaborbactam for Gram-Negative Bacterial Infections Including Carbapenem-Resistant Enterobacterales and Pseudomonas Aeruginosa

    Get PDF
    Background: We aimed to describe the clinical characteristics and outcomes of patients treated with meropenem-vaborbactam (MEV) for a variety of gram-negative infections (GNIs), primarily including carbapenem-resistant Enterobacterales (CRE). Methods: This is a real-world, multicenter, retrospective cohort within the United States between 2017 and 2020. Adult patients who received MEV for ≥72 hours were eligible for inclusion. The primary outcome was 30-day mortality. Classification and regression tree analysis (CART) was used to identify the time breakpoint (BP) that delineated the risk of negative clinical outcomes (NCOs) and was examined by multivariable logistic regression analysis (MLR). Results: Overall, 126 patients were evaluated from 13 medical centers in 10 states. The most common infection sources were respiratory tract (38.1%) and intra-abdominal (19.0%) origin, while the most common isolated pathogens were CRE (78.6%). Thirty-day mortality and recurrence occurred in 18.3% and 11.9%, respectively. Adverse events occurred in 4 patients: nephrotoxicity (n = 2), hepatoxicity (n = 1), and rash (n = 1). CART-BP between early and delayed treatment was 48 hours (P = .04). MEV initiation within 48 hours was independently associated with reduced NCO following analysis by MLR (adusted odds ratio, 0.277; 95% CI, 0.081-0.941). Conclusions: Our results support current evidence establishing positive clinical and safety outcomes of MEV in GNIs, including CRE. We suggest that delaying appropriate therapy for CRE significantly increases the risk of NCOs

    Biofilm Time-Kill Curves to Assess the Bactericidal Activity of Daptomycin Combinations against Biofilm-Producing Vancomycin-Resistant Enterococcus faecium and faecalis

    No full text
    Introduction: E. faecium and E. faecalis are responsible for 13.9% of hospital-acquired infections with frequent resistance to vancomycin (82.6% of E. faecium, 9.5% of E. faecalis). Medical device infections secondary to enterococci often require combination therapy due to impaired activity against biofilm embedded cells. In vitro data demonstrate synergistic activity of daptomycin combinations. Using a novel, biofilm time-kill approach, we evaluated whether daptomycin combinations maintained synergy against biofilm-producing E. faecium and E. faecalis. Methods: Broth microdilution (BMD) and biofilm MIC (bMIC) values for daptomycin, ampicillin, ceftriaxone, fosfomycin, and rifampin were determined against biofilm-producing E. faecium and E. faecalis. Daptomycin combination bMIC values were determined in the presence of biologic concentrations of other antimicrobials. Synergy was evaluated against two E. faecalis (R6981, R7808) and two E. faecium (5938 and 8019) using a previously described biofilm time-kill method. Synergy was defined as ≥2 log10 CFU/cm2 reduction over the most active agent alone. Bactericidal activity was defined as ≥3 log10 CFU/cm2 reduction. Results: Daptomycin bMICs were 2–8-fold higher than BMD. In the presence of other antimicrobials, daptomycin bMICs were reduced ≥ two-fold in dilutions. Ceftriaxone and ampicillin demonstrated the most potent combinations with daptomycin, yielding synergy against three of four strains. Daptomycin plus rifampin was synergistic against E. faecium 5938 and E. faecalis 6981 and produced bactericidal kill. The combination of daptomycin plus fosfomycin displayed synergy solely against E. faecalis 6981. Conclusions: Daptomycin combinations with beta-lactams demonstrated promising synergistic activity against both E. faecium and E. faecalis. While daptomycin plus rifampin yielded bactericidal results, the effect was not seen across all organisms. These combinations warrant further evaluation to determine the optimal dose and response

    The Pharmacokinetic and Pharmacodynamic Properties of Hydroxychloroquine and Dose Selection for COVID-19: Putting the Cart Before the Horse

    Full text link
    Abstract Coronavirus disease 2019 (COVID-19), caused by the 2019 novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently responsible for a global pandemic. To date, only remdesivir and dexamethasone have demonstrated a positive response in a prospective, randomized trial for the treatment of patients with COVID-19. Hydroxychloroquine (HCQ) is an agent available in an oral formulation with in vitro activity against SARS-CoV-2 that has been suggested as a potential agent. Unfortunately, results of randomized trials evaluating HCQ as treatment against a control group are lacking, and little is known about its pharmacokinetic/pharmacodynamic (PK/PD) profile against SARS-CoV-2. The objective of this review was to describe the current understanding of the PK/PD and dose selection of HCQ against SARS-CoV-2, discuss knowledge gaps, and identify future studies that are needed to optimize the efficacy and safety of treatments against COVID-19.http://deepblue.lib.umich.edu/bitstream/2027.42/173968/1/40121_2020_Article_325.pd

    Ribavirin and cellular ribavirin‐triphosphate concentrations in blood and bronchoalveolar lavage fluid in two lung transplant patients with respiratory syncytial virus

    Full text link
    Respiratory syncytial virus (RSV) is responsible for significant morbidity and mortality in the lung transplant population. Oral and aerosolized ribavirin may improve outcomes in lung transplant patients with RSV; however, data relating ribavirin concentrations in plasma and intracellular ribavirin triphosphate (iRTP) concentrations in blood and bronchoalveolar lavage (BAL) fluid cells with efficacy and safety are lacking. We describe ribavirin and iRTP concentrations within various compartments in two adult lung transplant recipients with RSV who were sampled throughout successful treatment courses with oral and inhaled ribavirin. In patient 1, iRTP BAL concentrations decreased by 45% over 3 days after changing inhaled ribavirin to oral (6.32 to 3.43 pmol/106 cells). In patient 2, iRTP BAL concentrations were 103 pmol/106 cells after 5 days of oral followed by 5 days of inhaled ribavirin. Further study is needed to describe ribavirin pharmacokinetics in the respiratory compartment to inform clinical use of ribavirin for respiratory viruses.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166443/1/tid13464_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/166443/2/tid13464.pd
    corecore