42 research outputs found

    Probabilistic VOR error due to several scatterers — Application to wind farms

    Get PDF
    International audienceThis paper introduces a method to calculate the VOR error due to multipaths from several known scatterers within known quantiles. In such a configuration, the amplitudes of the multipaths can be numerically or analytically calculated, whereas their phases are modelled as uniformly distributed. A probabilistic formulation of the VOR error that overestimates its variance is introduced to obtain the quantiles. The method is useful to obtain probabilities of occurrence of large VOR errors for multiple configurations and in a short computation time. Examples with wind farms are presented

    A Dynamic VOR Receiver Model for Estimating the Bearing Error in the Presence of Wind Turbines

    Get PDF
    International audienceThis work introduces a dynamic VOR receiver model for estimating the bearing error in the presence of wind turbines. The receiver processes time series generated by an electromagnetic simulation tool that takes into account the multipaths. This global model can reproduce the response of a VOR receiver on a realistic aircraft trajectory. The receiver is tested in a dynamic scenario where the multipaths change rapidly with time

    Single-fed circularly polarized dielectric resonator antenna using a uniaxial anisotropic material

    Get PDF
    A Dielectric Resonator Antenna operating in circular polarization is presented. The proposed antenna is formed by a uniaxial anisotropic dielectric and a ground plane. The optimization of the permittivity tensor and antenna dimensions is performed both theoretically and numerically using an Eigen mode analysis in Ansys HFSS. A good agreement is obtained for the resonant frequencies and quality factors of the different modes. The uniaxial anisotropic DRA radiates two degenerate orthogonal modes, TE111x and TE111y, with equal amplitudes and 90° phase difference in order to achieve circular polarization. An impedance bandwidth of 9.8% is accomplished and a broadside radiation pattern with left-hand circular polarization (LHCP) is achieved in simulation. Furthermore, an Axial Ratio (AR) of 0.06 dB at 2.45 GHz and a 3-dB AR bandwidth of 2.04% are obtained. The maximum simulated directivity is equal to 6.56 dBi

    Huygens Source Antenna using Stacked Dielectric Resonators

    Get PDF
    In this paper, an antenna made of two dielectric resonators is proposed to realize a Huygens source in linear polarization. The goal is to design an antenna with a radiation pattern oriented in one half-space without the use of ground plane. The principle relies on the combination of two collocated electric and magnetic dipoles at the center frequency of 2.42 GHz. The optimization of the antenna dimensions is performed with numerical analysis using far-field simulations in ANSYS HFSS. As a result, the antenna achieves a front-to-back ratio of 41 dB

    3D‐printed ceramics with engineered anisotropy for dielectric resonator antenna applications

    Get PDF
    In this letter, we study the design of three-dimensional (3D)-printed ceramics exhibiting anisotropic dielectric permittivities at microwave frequencies for dielectric resonator antenna (DRA) applications. The anisotropy is engineered by using periodic structures made up of subwavelength asymmetric unit cells filled with zirconia and air. Ceramic samples with uniaxial anisotropy are designed, 3D-printed, and measured. Birefringence up to 8 is achieved by controlling the volume fill rate of the unit cell. Besides, a single-fed circularly polarised (CP) DRA that relies on a 3-D-printed uniaxial anisotropic ceramic is proposed in the 2.45 GHz ISM band. Its simulated and measured reflection coefficient, axial ratio, and realised gain patterns are in good agreement, thus demonstrating the possibility of exploiting 3-D-printed anisotropic ceramics for DRA applications

    Improved Sensing and Positioning via 5G and mmWave radar for Airport Surveillance

    Get PDF
    This paper explores an integrated approach for improved sensing and positioning with applications in air traffic management (ATM) and in the Advanced Surface Movement Guidance & Control System (A-SMGCS). The integrated approach includes the synergy of 3D Vector Antenna with the novel time-of-arrival and angle-of-arrival estimate methods for accurate positioning, combining the sensing on the sub-6GHz and mmWave spectrum for the enhanced non-cooperative surveillance. For the positioning scope, both uplink and downlink 5G reference signals are investigated and their performance is evaluated. For the non-cooperative sensing scope, a novel 5G-signal-based imaging function is proposed and verified with realistic airport radio-propagation modelling and the AI-based targets tracking-and-motion recognition are investigated. The 5G-based imaging and mmWave radar based detection can be potentially fused to enhance surveillance in the airport. The work is being done within the European-funded project NewSense and it delves into the 5G, Vector Antennas, and mmWave capabilities for future ATM solutions.acceptedVersionPeer reviewe
    corecore