1,050 research outputs found

    Sequential Convex Programming Methods for Solving Nonlinear Optimization Problems with DC constraints

    Full text link
    This paper investigates the relation between sequential convex programming (SCP) as, e.g., defined in [24] and DC (difference of two convex functions) programming. We first present an SCP algorithm for solving nonlinear optimization problems with DC constraints and prove its convergence. Then we combine the proposed algorithm with a relaxation technique to handle inconsistent linearizations. Numerical tests are performed to investigate the behaviour of the class of algorithms.Comment: 18 pages, 1 figur

    An Inequality Constrained SL/QP Method for Minimizing the Spectral Abscissa

    Full text link
    We consider a problem in eigenvalue optimization, in particular finding a local minimizer of the spectral abscissa - the value of a parameter that results in the smallest value of the largest real part of the spectrum of a matrix system. This is an important problem for the stabilization of control systems. Many systems require the spectra to lie in the left half plane in order for them to be stable. The optimization problem, however, is difficult to solve because the underlying objective function is nonconvex, nonsmooth, and non-Lipschitz. In addition, local minima tend to correspond to points of non-differentiability and locally non-Lipschitz behavior. We present a sequential linear and quadratic programming algorithm that solves a series of linear or quadratic subproblems formed by linearizing the surfaces corresponding to the largest eigenvalues. We present numerical results comparing the algorithms to the state of the art

    A New Distribution-Free Concept for Representing, Comparing, and Propagating Uncertainty in Dynamical Systems with Kernel Probabilistic Programming

    Full text link
    This work presents the concept of kernel mean embedding and kernel probabilistic programming in the context of stochastic systems. We propose formulations to represent, compare, and propagate uncertainties for fairly general stochastic dynamics in a distribution-free manner. The new tools enjoy sound theory rooted in functional analysis and wide applicability as demonstrated in distinct numerical examples. The implication of this new concept is a new mode of thinking about the statistical nature of uncertainty in dynamical systems
    corecore