312 research outputs found

    Top-Down Skiplists

    Full text link
    We describe todolists (top-down skiplists), a variant of skiplists (Pugh 1990) that can execute searches using at most log2εn+O(1)\log_{2-\varepsilon} n + O(1) binary comparisons per search and that have amortized update time O(ε1logn)O(\varepsilon^{-1}\log n). A variant of todolists, called working-todolists, can execute a search for any element xx using log2εw(x)+o(logw(x))\log_{2-\varepsilon} w(x) + o(\log w(x)) binary comparisons and have amortized search time O(ε1logw(w))O(\varepsilon^{-1}\log w(w)). Here, w(x)w(x) is the "working-set number" of xx. No previous data structure is known to achieve a bound better than 4log2w(x)4\log_2 w(x) comparisons. We show through experiments that, if implemented carefully, todolists are comparable to other common dictionary implementations in terms of insertion times and outperform them in terms of search times.Comment: 18 pages, 5 figure

    The Fresh-Finger Property

    Full text link
    The unified property roughly states that searching for an element is fast when the current access is close to a recent access. Here, "close" refers to rank distance measured among all elements stored by the dictionary. We show that distance need not be measured this way: in fact, it is only necessary to consider a small working-set of elements to measure this rank distance. This results in a data structure with access time that is an improvement upon those offered by the unified property for many query sequences

    An optimal randomized algorithm for d-variate zonoid depth

    Get PDF
    AbstractA randomized linear expected-time algorithm for computing the zonoid depth [R. Dyckerhoff, G. Koshevoy, K. Mosler, Zonoid data depth: Theory and computation, in: A. Prat (Ed.), COMPSTAT 1996—Proceedings in Computational Statistics, Physica-Verlag, Heidelberg, 1996, pp. 235–240; K. Mosler, Multivariate Dispersion, Central Regions and Depth. The Lift Zonoid Approach, Lecture Notes in Statistics, vol. 165, Springer-Verlag, New York, 2002] of a point with respect to a fixed dimensional point set is presented

    The Price of Order

    Full text link
    We present tight bounds on the spanning ratio of a large family of ordered θ\theta-graphs. A θ\theta-graph partitions the plane around each vertex into mm disjoint cones, each having aperture θ=2π/m\theta = 2 \pi/m. An ordered θ\theta-graph is constructed by inserting the vertices one by one and connecting each vertex to the closest previously-inserted vertex in each cone. We show that for any integer k1k \geq 1, ordered θ\theta-graphs with 4k+44k + 4 cones have a tight spanning ratio of 1+2sin(θ/2)/(cos(θ/2)sin(θ/2))1 + 2 \sin(\theta/2) / (\cos(\theta/2) - \sin(\theta/2)). We also show that for any integer k2k \geq 2, ordered θ\theta-graphs with 4k+24k + 2 cones have a tight spanning ratio of 1/(12sin(θ/2))1 / (1 - 2 \sin(\theta/2)). We provide lower bounds for ordered θ\theta-graphs with 4k+34k + 3 and 4k+54k + 5 cones. For ordered θ\theta-graphs with 4k+24k + 2 and 4k+54k + 5 cones these lower bounds are strictly greater than the worst case spanning ratios of their unordered counterparts. These are the first results showing that ordered θ\theta-graphs have worse spanning ratios than unordered θ\theta-graphs. Finally, we show that, unlike their unordered counterparts, the ordered θ\theta-graphs with 4, 5, and 6 cones are not spanners
    corecore