244 research outputs found

    Star clusters in unperturbed spiral galaxies

    Get PDF
    Stars do not form in isolation, they form in groups known as star clusters. Star clusters are seen in a wide range of galaxies and environments. Their presence reveals the history of the host galaxy and the processes of its star formation. During the last years star clusters have been deeply investigated in violent environments, while the properties of star clusters in more quiet environments have received less attention. Among all unperturbed environments we focus on 5 spiral galaxies with no signs of external perturbations: NGC 45, NGC 1313, NGC 4395, NGC 5236 and NGC 7793. Star clusters lying in these galaxies were observed through HST imaging and VLT spectroscopy. The analysis of star cluster masses, ages, sizes, and their positions on the galaxies, showed that star cluster formation is an ongoing process that depends on the local conditions. The observed star cluster luminosity functions show values consistent with the expected alpha~-2. We found an important number of globular clusters in NGC 45. Their properties are analyzed through photometry and spectroscopy. Photometry suggests that these globular clusters belong to a single metal poor population. Spectroscopy confirmed this for the 8 brightest ones. Velocities indicate halo or bulge kinematics. Absorption spectrum features indicate ages of the order of Gyr and [alpha/Fe] values lower than the Milky Way globular clusters, but similar to dwarf galaxies in the local group

    On Collision Course: The Nature of the Binary Star Cluster NGC 2006 / SL 538

    Full text link
    The LMC hosts a rich variety of star clusters seen in close projected proximity. Ages have been derived for few of them showing differences up to few million years, hinting at being binary star clusters. However, final confirmation needs to be done through spectroscopic analysis. Here we focus on the LMC cluster pair NGC2006-SL538 and aim to determine whether the star cluster pair is a bound entity (binary star cluster) or a chance alignment. Using the MIKE echelle spectrograph at LCO we have acquired integrated-light spectra for each cluster. We have measured radial velocities by two methods: a) direct line profile measurement yields vr=300.3±5±6_r=300.3\pm5\pm6 km/s for NGC2006 and vr=310.2±4±6v_r=310.2\pm4\pm6 km/s for SL538. b) By comparing observed spectra with synthetic bootstrapped spectra yielding vr=311.0±0.6v_r=311.0\pm0.6 km/s for NGC2006 and vr=309.4±0.5v_r=309.4\pm0.5 km/s for SL538. Finally when spectra are directly compared, we find a Δv=1.08±0.47{\Delta}v=1.08\pm0.47 km/s. Full-spectrum SED fits reveal that the stellar population ages lie in the range 13-21 Myr with a metallicity of Z=0.008. We find indications for differences in the chemical abundance patterns as revealed by the helium absorption lines between the two clusters. The dynamical analysis shows that the two clusters are likely to merge within the next \sim150 Myr. The NGC2006-SL538 cluster pair shows radial velocities, stellar population and dynamical parameters consistent with a gravitational bound entity. We conclude that this is a genuine binary cluster pair, and we propose that their differences in ages and stellar population chemistry is most likely due to variances in their chemical enrichment history within their environment. We suggest that their formation may have taken place in a loosely bound star-formation complex which saw initial fragmentation but then had its clusters become a gravitationally bound pair by tidal capture.Comment: Accepted for publication in Astronomy & Astrophysics. 15 pages, 10 figures in low resolutio

    Nature Of Transition Circumstellar Disks. I. The Ophiuchus Molecular Cloud

    Get PDF
    We have obtained millimeter-wavelength photometry, high-resolution optical spectroscopy, and adaptive optics near-infrared imaging for a sample of 26 Spitzer-selected transition circumstellar disks. All of our targets are located in the Ophiuchus molecular cloud (d similar to 125 pc) and have spectral energy distributions (SEDs) suggesting the presence of inner opacity holes. We use these ground-based data to estimate the disk mass, multiplicity, and accretion rate for each object in our sample in order to investigate the mechanisms potentially responsible for their inner holes. We find that transition disks are a heterogeneous group of objects, with disk masses ranging from <0.6 to 40 M(JUP) and accretion rates ranging from <10(-11) to 10(-7) M(circle dot) yr(-1), but most tend to have much lower masses and accretion rates than "full disks" (i.e., disks without opacity holes). Eight of our targets have stellar companions: six of them are binaries and the other two are triple systems. In four cases, the stellar companions are close enough to suspect they are responsible for the inferred inner holes. We find that nine of our 26 targets have low disk mass (<2.5 M(JUP)) and negligible accretion (<10(-11) M(circle dot) yr(-1)), and are thus consistent with photoevaporating (or photoevaporated) disks. Four of these nine non-accreting objects have fractional disk luminosities <10(-3) and could already be in a debris disk stage. Seventeen of our transition disks are accreting. Thirteen of these accreting objects are consistent with grain growth. The remaining four accreting objects have SEDs suggesting the presence of sharp inner holes, and thus are excellent candidates for harboring giant planets.NASA 1224608, 1230782, 1230779, 1407FONDECYT 1061199Basal CATA PFB 06/09ALMA FUND 31070021ALMA-Conicyt FUND 31060010National Science Foundation AST0-808144Spitzer Space Telescope Legacy Science ProgramAstronom

    Dispersal and population structure at different spatial scales in the subterranean rodent Ctenomys australis

    Get PDF
    <p>Abstract</p> <p><b>Background</b></p> <p>The population genetic structure of subterranean rodent species is strongly affected by demographic (e.g. rates of dispersal and social structure) and stochastic factors (e.g. random genetic drift among subpopulations and habitat fragmentation). In particular, gene flow estimates at different spatial scales are essential to understand genetic differentiation among populations of a species living in a highly fragmented landscape. <it>Ctenomys australis </it>(the sand dune tuco-tuco) is a territorial subterranean rodent that inhabits a relatively secure, permanently sealed burrow system, occurring in sand dune habitats on the coastal landscape in the south-east of Buenos Aires province, Argentina. Currently, this habitat is threatened by urban development and forestry and, therefore, the survival of this endemic species is at risk. Here, we assess population genetic structure and patterns of dispersal among individuals of this species at different spatial scales using 8 polymorphic microsatellite loci. Furthermore, we evaluate the relative importance of sex and habitat configuration in modulating the dispersal patterns at these geographical scales.</p> <p>Results</p> <p>Our results show that dispersal in <it>C. australis </it>is not restricted at regional spatial scales (~ 4 km). Assignment tests revealed significant population substructure within the study area, providing support for the presence of two subpopulations from three original sampling sites. Finally, male-biased dispersal was found in the Western side of our study area, but in the Eastern side no apparent philopatric pattern was found, suggesting that in a more continuous habitat males might move longer distances than females.</p> <p>Conclusions</p> <p>Overall, the assignment-based approaches were able to detect population substructure at fine geographical scales. Additionally, the maintenance of a significant genetic structure at regional (~ 4 km) and small (less than 1 km) spatial scales despite apparently moderate to high levels of gene flow between local sampling sites could not be explained simply by the linear distance among them. On the whole, our results support the hypothesis that males disperse more frequently than females; however they do not provide support for strict philopatry within females.</p

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO
    corecore