4 research outputs found

    Optimal Controller Design and Dynamic Performance Enhancement of High Step-up Non-Isolated DC-DC Converter for Electric Vehicle Charging Applications

    Get PDF
    Ideally, traditional boost converters can achieve a high conversion ratio with a high-duty cycle. But, in regular practice, due to low conversion efficiency, RR reverse-recovery, and EMI (electromagnetic interference) problems, the high voltage gain cannot be performed, whereas CIBC (coupled inductor-based converters) can achieve high voltage gain by re-adjusting the turn ratios. Even though the leakage inductor of the CI (coupled inductor) makes some problems like voltage spikes on the main connectivity switch, high power dissipation, and voltage pressure can be minimized by voltage clamp. In this paper, a non-isolated DC-DC converter with high voltage gain is demonstrated with 3 diodes, 3 capacitors, 1-inductor, and a coupled inductor. The main inductor is connected to the input to decrease the current ripple. The voltage stress at main switch S is shared by diode D1 and capacitor C1 and the main switch is turned ON under zero current, hence it turns to low switching losses. This paper proposes two controllers like proportional-integral (PI) controller and fuzzy logic (FLC) for dc-dc converter. Furthermore, it demonstrates the operation, design, mathematical analysis, and performance of DC-DC converter using controllers for efficient operation of the system is performed using simulations in MATLAB 2012b

    DSP based current controlled single stage single phase integrated converter with external compensating signal for Class-C & Class-D appliances

    No full text
    Design and implementation of a current controlled single stage single phase integrated AC/DC isolated Power Factor Correction (PFC) converter is presented in this paper. With the integrated topology reduces the number control switches. The proposed converter has the advantage of low bulk capacitor voltage and only single control switch hence reduce in complexity in control and cost. Sub-harmonic oscillations which are produced in conventional current controller. By adding an external compensating signal effect of oscillations are reduced and performance of the converter is improved. The proposed scheme is implemented in real time by TMS320F2812 digital signal processor (DSP) board. The performance of converter is verified both experimentally and by simulation at different load and line conditions. The proposed converter is designed for 90–230 V, 50 Hz AC input, 48 V DC output and operating at 100 kHz switching frequency. The Experimental results shows that the DSP-based fuzzy controlled single phase single switch integrated PFC converter achieve high power factor and satisfies IEC-61000-3-2 and other European input current harmonic limits for Class-C & Class-D applications

    Design, control and performance comparison of PI and ANFIS controllers for BLDC motor driven electric vehicles

    No full text
    The research and usage of electric vehicles (EVs), including two and four-wheeler vehicles, are rapidly increasing worldwide as alternatives to oil/gas-based vehicles. Brushless direct current (BLDC) motors are popular for industrial and traction applications due to their inherent advantages. In EVs, achieving low error in steady-state and transient responses is crucial for smooth acceleration at the wheel. This paper presents the design and control of a BLDC motor for speed control during acceleration and deceleration, considering error as a key factor in the MATLAB/Simulink environment. Proportional-integral (PI) and fuzzy controllers are commonly used for motor control to improve steady-state and transient performance, thereby reducing error. In this study, the PI and adaptive neuro-fuzzy inference system (ANFIS) controllers are designed and compared for a 5-kW, 48-V, and 100-Amp BLDC motor in EV applications. The results demonstrate that the ANFIS controller enhances the dynamic performance of the BLDC motor and improves other operating characteristics such as rise time, settling time, peak overshoot percentage and the vehicle response in terms of speed and distance
    corecore