5,374 research outputs found

    Superconducting fluctuations in organic molecular metals enhanced by Mott criticality

    Get PDF
    Unconventional superconductivity typically occurs in materials in which a small change of a parameter such as bandwidth or doping leads to antiferromagnetic or Mott insulating phases. As such competing phases are approached, the properties of the superconductor often become increasingly exotic. For example, in organic superconductors and underdoped high-TcT_\mathrm{c} cuprate superconductors a fluctuating superconducting state persists to temperatures significantly above TcT_\mathrm{c}. By studying alloys of quasi-two-dimensional organic molecular metals in the Îș\kappa-(BEDT-TTF)2_2X family, we reveal how the Nernst effect, a sensitive probe of superconducting phase fluctuations, evolves in the regime of extreme Mott criticality. We find strong evidence that, as the phase diagram is traversed through superconductivity towards the Mott state, the temperature scale for superconducting fluctuations increases dramatically, eventually approaching the temperature at which quasiparticles become identifiable at all.Comment: 19 pages, 4 figures, 1 tabl

    Dissipation in the superconducting state of kappa-(BEDT-TTF)2Cu(NCS)2

    Get PDF
    We have studied the interlayer resistivity of the prototypical quasi-two-dimensional organic superconductor Îș\kappa-(BEDT-TTF)2_2Cu(NCS)2_2 as a function of temperature, current and magnetic field, within the superconducting state. We find a region of non-zero resistivity whose properties are strongly dependent on magnetic field and current density. There is a crossover to non-Ohmic conduction below a temperature that coincides with the 2D vortex solid -- vortex liquid transition. We interpret the behaviour in terms of a model of current- and thermally-driven phase slips caused by the diffusive motion of the pancake vortices which are weakly-coupled in adjacent layers, giving rise to a finite interlayer resistance.Comment: Four pages, three figure

    Tetrahydroabietic Acid, a Reduced Abietic Acid, Inhibits the Production of Inflammatory Mediators in RAW264.7 Macrophages Activated with Lipopolysaccharide

    Get PDF
    Abietic acid (AA), the main component of the rosin fraction of oleoresin synthesized by conifer species, has been reported to have anti-inflammatory effects. AA is a weak contact allergen; however, compounds resulting from its oxidation by air elicit stronger allergic response. Hydrogenation of the conjugated double bonds of AA, as in tetrahydroabietic acid (THAA), decreases its susceptibility to air oxidation and would thus reduce the allergenicity of AA. The aim of this study was to investigate whether THAA could exert anti-inflammatory effects to the same extent as AA in RAW264.7 macrophages activated with the endotoxin lipopolysaccharide (LPS). THAA and AA inhibited the production of nitric oxide (NO) and prostaglandin E2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively, in LPS-activated RAW264.7 macrophages. They also inhibited the LPS-induced production of interleukin (IL)-1ÎČ, IL-6, and tumor necrosis factor-α. Both THAA and AA prevented the LPS-induced nuclear translocation of the nuclear factor-ÎșB/p65 subunit, suggesting that THAA may inhibit the production of pro-inflammatory mediators through the same mechanism as AA. In comparison, the anti-inflammatory effects of THAA and AA were almost identical, indicating that THAA retains the anti-inflammatory activity of AA at least in LPS-activated RAW264.7 macrophages

    Evaluation of Various Packaging Systems on the Activity of Antioxidant Enzyme, and Oxidation and Color Stabilities in Sliced Hanwoo (Korean Cattle) Beef Loin during Chill Storage

    Get PDF
    The effects of various packaging systems, vacuum packaging (VACP), medium oxygen-modified atmosphere packaging (50% O2/20% CO2/30% N2, MOMAP), MOMAP combined with vacuum skin packaging (VSP-MOMAP), high oxygen-MAP (80% O2/20% CO2/0% N2, HOMAP), and HOMAP combined with VSP (VSP-HOMAP), on the activity of antioxidant enzyme, and oxidation and color stabilities in sliced Hanwoo (Korean cattle) beef loin were investigated at 4°C for 14 d. Higher (p<0.05) superoxide dismutase activity and total reducing ability were maintained in VSP-MOMAP beef than in HOMAP beef. Lipid oxidation (2-thiobarbituric acid reactive substances, TBARS) was significantly (p<0.05) retarded in MOMAP, VSP-MOMAP, and VSP-HOMAP beef compared with HOMAP beef. Production of nonheme iron content was lower (p<0.05) in VSP-MOMAP beef than in HOMAP beef. Red color (a*) was kept higher (p<0.05) in VSP-MOMAP beef compared with MOMAP, HOMAP, and VSP-HOMAP beef. However, VACP beef was found to have the most positive effects on the antioxidant activity, oxidation and red color stabilities among the various packaged beef. These findings suggested that VSP-MOMAP was second to VACP in improving oxidation and color stabilities in sliced beef loin during chill storage

    TSLP Induces Mast Cell Development and Aggravates Allergic Reactions through the Activation of MDM2 and STAT6

    Get PDF
    Thymic stromal lymphopoietin (TSLP) is known to promote T helper type 2 cell–associated inflammation. Mast cells are major effector cells in allergic inflammatory responses. We noted that the population and maturation of mast cells were reduced in TSLP-deficient mice (TSLP-/-). Thus, we hypothesized that TSLP might affect mast cell development. We found that TSLP induced the proliferation and differentiation of mast cells from bone marrow progenitors. TSLP-induced mast cell proliferation was abolished by depletion of mouse double minute 2 (MDM2) and signal transducers and activators of transcription 6 (STAT6), as an upstream activator of MDM2. TSLP-/-, in particular, had a considerable deficit in the expression of MDM2 and STAT6. Also, the TSLP deficiency attenuated mast cell–mediated allergic reactions through the downregulation of STAT6 and MDM2. In an antibody microarray chip analysis, MDM2 expression was increased in atopic dermatitis patients. These observations indicate that TSLP is a factor for mast cell development, and that it aggravates mast cell–mediated immune responses
    • 

    corecore