2 research outputs found

    Scalable Fabrication of Flexible Microstencils by Using Sequentially Induced Dewetting Phenomenon

    No full text
    We present the physics of sequential dewetting phenomenon and continuous fabrication of a polymeric microstencil using dewetting phenomenon with roll-to-roll imprinting equipment. To realize dewetting-assisted residual-free imprinting, mold material, polymer resin, and substrate were selected via interfacial surface energy analysis. In addition, optimal parameters of the continuous process were also studied by experimentally comparing the resultant shape of the microstencil depending on the process speed, aspect ratio of the mold, and applied pressure. As a result, the polymeric microstencil was produced continuously in very high yields, and its maximum resolution reached 20 μm in diameter. For an easy, continuous demolding during the roll-to-roll process, the material chosen for the substrate film was paraffin-coated film, which has the surface energy low enough for dewetting while having a higher adhesion value than polydimethylsiloxane mold. This versatile, high-throughput microstencil fabrication process can be used in many applications requiring flexibility, scalability, and specific material, and high productivity

    Continuous and Scalable Fabrication of Bioinspired Dry Adhesives via a Roll-to-Roll Process with Modulated Ultraviolet-Curable Resin

    No full text
    A simple yet scalable strategy for fabricating dry adhesives with mushroom-shaped micropillars is achieved by a combination of the roll-to-roll process and modulated UV-curable elastic poly­(urethane acrylate) (e-PUA) resin. The e-PUA combines the major benefits of commercial PUA and poly­(dimethylsiloxane) (PDMS). It not only can be cured within a few seconds like commercial PUA but also possesses good mechanical properties comparable to those of PDMS. A roll-type fabrication system equipped with a rollable mold and a UV exposure unit is also developed for the continuous process. By integrating the roll-to-roll process with the e-PUA, dry adhesives with spatulate tips in the form of a thin flexible film can be generated in a highly continuous and scalable manner. The fabricated dry adhesives with mushroom-shaped microstructures exhibit a strong pull-off strength of up to ∼38.7 N cm<sup>–2</sup> on the glass surface as well as high durability without any noticeable degradation. Furthermore, an automated substrate transportation system equipped with the dry adhesives can transport a 300 mm Si wafer over 10 000 repeating cycles with high accuracy
    corecore