14 research outputs found

    SSU Ribosomal DNA-Based Monitoring of Nematode Assemblages Reveals Distinct Seasonal Fluctuations within Evolutionary Heterogeneous Feeding Guilds

    Get PDF
    Soils are among the most complex, diverse and competitive habitats on Earth and soil biota are responsible for ecosystem services such as nutrient cycling, carbon sequestration and remediation of freshwater. The extreme biodiversity prohibits the making of a full inventory of soil life. Hence, an appropriate indicator group should be selected to determine the biological condition of soil systems. Due to their ubiquity and the diverse responses to abiotic and biotic changes, nematodes are suitable indicators for environmental monitoring. However, the time-consuming microscopic analysis of nematode communities has limited the scale at which this indicator group is used. In an attempt to circumvent this problem, a quantitative PCR-based tool for the detection of a consistent part of the soil nematofauna was developed based on a phylum-wide molecular framework consisting of 2,400 full-length SSU rDNA sequences. Taxon-specific primers were designed and tested for specificity. Furthermore, relationships were determined between the quantitative PCR output and numbers of target nematodes. As a first field test for this DNA sequence signature-based approach, seasonal fluctuations of nematode assemblages under open canopy (one field) and closed canopy (one forest) were monitored. Fifteen taxa from four feeding guilds (covering ~ 65% of the free-living nematode biodiversity at higher taxonomical level) were detected at two trophic levels. These four feeding guilds are composed of taxa that developed independently by parallel evolution and we detected ecologically interpretable patterns for free-living nematodes belonging to the lower trophic level of soil food webs. Our results show temporal fluctuations, which can be even opposite within taxa belonging to the same guild. This research on nematode assemblages revealed ecological information about the soil food web that had been partly overlooked

    Both SSU rDNA and RNA polymerase II data recognise that root-knot nematodes arose from migratory Pratylenchidae, but probably not from one of the economically high-impact lesion nematodes

    No full text
    In 2000 Siddiqi formulated a hypothesis stating that root-knot nematodes (Meloidogyne spp.) constitute a branch arising from yet another important group of plant parasites, the migratory Pratylenchidae. This hypothesis was solely based on morphological characteristics. Ribosomal DNA (rDNA) sequence analysis supports this hypothesis in its broad sense, but the more precise question about the identity of a migratory Pratylenchidae representative being closest to the most basal Meloidogyne species could not be addressed due to a lack of backbone resolution (Holterman et al., 2009). Here we present an extended small subunit rDNA sequence analysis and a data set of partial RNA polymerase II sequences from Pratylenchidae and basal Meloidogynidae. Our data point at members of the genus Pratylenchus as being closest to the common ancestor of the root-knot nematodes, but it was not possible unequivocally to identify a candidate lesion nematode species. Pratylenchus is a species-rich genus (ca 70 valid species), and we suggest that the species closest to the most basal root-knot nematode should be sought outside of the group of relatively well-characterised, agronomically relevant, species

    Methods for detecting cyst nematodes

    No full text
    The present invention relates to a method for determining the presence of a cyst nematode in a sample comprising the steps of : providing a pair of bidirectional oligonucleotide primers or an oligonucleotide probe that hybridizes specifically, under stringent hybridization conditions, to a nucleic acid sequence encoding the SSU rRNA or LSU rRNA, or the complement or transcript thereof, of a sub genus-cluster of nematodes, said subgenus-cluster comprising cyst nematodes belonging to at least one species of nematode, and wherein said primers or probe do not hybridize to a nucleic acid sequence encoding the LSU rRNA, or the complement or transcript thereof, of cyst nematodes not part of said subgenus-cluster of cyst nematodes; providing a sample in which the presence of the cyst nematode is to be detected, and performing a nucleic acid detection assay on said sample using said pair of bidirectional oligonucleotide primers or said oligonucleotide probe

    A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences

    No full text
    As a result of the scarcity of informative morphological and anatomical characters, nematode systematics have always been volatile. Differences in the appreciation of these characters have resulted in numerous classifications and this greatly confuses scientific communication. An advantage of the use of molecular data is that it allows for an enormous expansion of the number of characters. Here we present a phylogenetic tree based on 1215 small subunit ribosomal DNA sequences (ca 1700 bp each) covering a wide range of nematode taxa. Of the 19 nematode orders mentioned by De Ley et al. (2006) 15 are represented here. Compared with Holterman et al. (2006) the number of taxa analysed has been tripled. This did not result in major changes in the clade subdivision of the phylum, although a decrease in the number of well supported nodes was observed. Especially at the family level and below we observed a considerable congruence between morphology and ribosomal DNA-based nematode systematics and, in case of discrepancies, morphological or anatomical support could be found for the alternative grouping in most instances. The extensiveness of convergent evolution is one of the most striking phenomena observed in the phylogenetic tree presented here - it is hard to find a morphological, ecological or biological characteristic that has not arisen at least twice during nematode evolution. Convergent evolution appears to be an important additional explanation for the seemingly persistent volatility of nematode systematics

    Data from: The differential impact of a native and a non-native ragwort species (Senecioneae) on the first and second trophic level of the rhizosphere food web

    No full text
    Whereas the impact of exotic plant species on above-ground biota is relatively well-documented, far less is known about the effects of non-indigenous plants on the first and second trophic level of the rhizosphere food web. Here, rhizosphere communities of the invasive narrow-leaved ragwort Senecio inaequidens and the native tansy ragwort Jacobaea vulgaris, co-occurring in three semi-natural habitats are compared. For both species, two life stages were taken into consideration. Quantitative PCR assays for the analyses of bacterial and fungal communities at a high taxonomic level were optimized, and it was investigated whether changes in the primary decomposer community were translated in alterations in bacterivorous and fungivorous nematode communities. In contrast to J. vulgaris, small but significant reductions were observed for Actinobacteria and Bacteroidetes (both p < 0.05) in case of the invasive S. inaequidens. More pronounced changes were detected for the overall nematode community density, and, more specifically, for the bacterivorous genus Anaplectus and the family Monhysteridae (both p < 0.05), as well as the necromenic Pristionchus (p < 0.001). At high taxonomic level, no differences were observed in fungal rhizosphere communities between native and non-native ragwort species. The impact of plant developmental stages on rhizosphere biota was prominent. The overall bacterial and fungal biomasses, as well as a remarkably consistent set of constituents (Actinobacteria, α- and β-Proteobacteria and Bacteroidetes) were negatively affected by plant stage for both ragwort species. Although later developmental stages of plants generally coincided with lower levels for individual nematode taxa, densities of the fungivorous genera Diphtherophora and Tylolaimophorus remain unaltered. Hence, even at a high taxonomic level, differential effects of native and non-native ragwort could be pinpointed. However, plant developmental stage has a more prominent impact and this impact was similar in nature for both native and non-native ragwort species
    corecore