85 research outputs found
Immune microenvironment dysfunctions enable malignification at the onset of myelodysplastic syndromes
View full abstracthttps://openworks.mdanderson.org/leading-edge/1002/thumbnail.jp
MDM2 Antagonist Improves Therapeutic Activity of Azacitidine in Myelodysplastic Syndromes and Chronic Myelomonocytic Leukemia
Failure of hypomethylation agent (HMA) treatments is an important issue in myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML). Recent studies indicated that function of wildtype TP53 positively impacts outcome of HMA treatments. We investigated the combination of the HMA azacitidine (AZA) with DS-3032b and DS-5272, novel antagonists of the TP53 negative regulator MDM2, in cellular and animal models of MDS and CMML. In TP53 wildtype myeloid cell line, combinational effects of DS-3032b or DS-5272 with AZA were observed. In Tet2-knockout mouse model of MDS and CMML, DS-5272 and AZA combination ameliorated disease-like phenotype. RNA-Seq analysis in mouse bone marrow hematopoietic stem and progenitors indicated that DS-5272 and AZA combination caused down-regulation of leukemia stem cell marker genes and activation of pathways of TP53 function and stability. These findings demonstrate that combining an MDM2 antagonist with AZA has potential to improve AZA treatment in TP53 wildtype MDS and CMML
Hematopoietic Stem Cells With Granulo-Monocytic Differentiation State Overcome Venetoclax Sensitivity in Patients With Myelodysplastic Syndromes
The molecular mechanisms of venetoclax-based therapy failure in patients with acute myeloid leukemia were recently clarified, but the mechanisms by which patients with myelodysplastic syndromes (MDS) acquire secondary resistance to venetoclax after an initial response remain to be elucidated. Here, we show an expansion of MDS hematopoietic stem cells (HSCs) with a granulo-monocytic-biased transcriptional differentiation state in MDS patients who initially responded to venetoclax but eventually relapsed. While MDS HSCs in an undifferentiated cellular state are sensitive to venetoclax treatment, differentiation towards a granulo-monocytic-biased transcriptional state, through the acquisition or expansion of clones with STAG2 or RUNX1 mutations, affects HSCs\u27 survival dependence from BCL2-mediated anti-apoptotic pathways to TNFα-induced pro-survival NF-κB signaling and drives resistance to venetoclax-mediated cytotoxicity. Our findings reveal how hematopoietic stem and progenitor cell (HSPC) can eventually overcome therapy-induced depletion and underscore the importance of using close molecular monitoring to prevent HSPC hierarchical change in MDS patients enrolled in clinical trials of venetoclax
Targeting MCL1-Driven Anti-apoptotic Pathways Overcomes Blast Progression After Hypomethylating Agent Failure in Chronic Myelomonocytic Leukemia
RAS pathway mutations, which are present in 30% of patients with chronic myelomonocytic leukemia (CMML) at diagnosis, confer a high risk of resistance to and progression after hypomethylating agent (HMA) therapy, the current standard of care for the disease. Here, using single-cell, multi-omics technologies, we seek to dissect the biological mechanisms underlying the initiation and progression of RAS pathway-mutated CMML. We identify that RAS pathway mutations induce transcriptional reprogramming of hematopoietic stem and progenitor cells (HSPCs) and downstream monocytic populations in response to cell-intrinsic and -extrinsic inflammatory signaling that also impair the functions of immune cells. HSPCs expand at disease progression after therapy with HMA or the BCL2 inhibitor venetoclax and rely on the NF-κB pathway effector MCL1 to maintain survival. Our study has implications for the development of therapies to improve the survival of patients with RAS pathway-mutated CMML
Genomic context and TP53 allele frequency define clinical outcomes in TP53-mutated myelodysplastic syndromes
TP53 mutations are associated with adverse outcomes and shorter response to hypomethylating agents (HMAs) in myelodysplastic syndrome (MDS). Limited data have evaluated the impact of the type, number, and patterns of TP53 mutations in response outcomes and prognosis of MDS. We evaluated the clinicopathologic characteristics, outcomes, and response to therapy of 261 patients with MDS and TP53 mutations. Median age was 68 years (range, 18-80 years). A total of 217 patients (83%) had a complex karyotype. TP53 mutations were detected at a median variant allele frequency (VAF) of 0.39 (range, 0.01-0.94). TP53 deletion was associated with lower overall response rate (ORR) (odds ratio, 0.3; P = .021), and lower TP53 VAF correlated with higher ORR to HMAs. Increase in TP53 VAF at the time of transformation was observed in 13 patients (61%), and previously undetectable mutations were observed in 15 patients (65%). TP53 VAF was associated with worse prognosis (hazard ratio, 1.02 per 1% VAF increase; 95% confidence interval, 1.01-1.03; P \u3c .001). Integration of TP53 VAF and karyotypic complexity identified prognostic subgroups within TP53-mutant MDS. We developed a multivariable model for overall survival that included the revised International Prognostic Scoring System (IPSS-R) categories and TP53 VAF. Total score for each patient was calculated as follows: VAF TP53 + 13 × IPSS-R blast score + 16 × IPSS-R cytogenetic score + 28 × IPSS-R hemoglobin score + 46 × IPSS-R platelet score. Use of this model identified 4 prognostic subgroups with median survival times of not reached, 42.2, 21.9, and 9.2 months. These data suggest that outcomes of patients with TP53-mutated MDS are heterogeneous and that transformation may be driven not only by TP53 but also by other factors
Targeted Therapy With the Mutant IDH2 Inhibitor Enasidenib for High-Risk IDH2-Mutant Myelodysplastic Syndrome
The isocitrate dehydrogenase enzyme 2 (IDH2) gene is mutated in ∼5% of patients with myelodysplastic syndrome (MDS). Enasidenib is an oral, selective, mutant IDH2 inhibitor approved for IDH2-mutated (mIDH2) relapsed/refractory acute myeloid leukemia. We designed a 2-arm multicenter study to evaluate safety and efficacy of (A) the combination of enasidenib with azacitidine for newly diagnosed mIDH2 MDS, and (B) enasidenib monotherapy for mIDH2 MDS after prior hypomethylating agent (HMA) therapy. Fifty patients with mIDH2 MDS enrolled: 27 in arm A and 23 in arm B. Median age of patients was 73 years. The most common adverse events were neutropenia (40%), nausea (36%), constipation (32%), and fatigue (26%). Hyperbilirubinemia from off-target UGT1A1 inhibition occurred in 14% of patients (8%; grades 3 and 4), and IDH-inhibitor-associated differentiation syndrome (IDH-DS) in 8 patients (16%). In the combination arm, the overall response rate (ORR: complete remission [CR] + marrow CR [mCR] + partial remission) was 74%, including 70% composite CR (CRc: CR + mCR). Median time to best response was 1 month (range, 1-4), and a median of 4 cycles was received (1-32). The median overall survival (OS) was 26 months (range, 14 to not reached). In the enasidenib monotherapy cohort after HMA failure, ORR and CRc were both 35% (n = 8), with 22% CR (n = 5). Median time to first response was 27 days, and time to best response was 4.6 months (2.7-7.6 months). A median of 7 cycles was received (range, 1-29), and the median OS was 20 months (range, 11 to not reached). Enasidenib is an effective treatment option for mIDH2 MDS, both in combination with azacitidine for treatment-naïve high-risk MDS, and as a single agent after prior HMA therapy. This trial is registered at www.clinicaltrials.gov as #NCT03383575
Hematopoiesis under telomere attrition at the single-cell resolution
The molecular mechanisms that drive hematopoietic stem cell functional decline under conditions of telomere shortening are not completely understood. In light of recent advances in single-cell technologies, we sought to redefine the transcriptional and epigenetic landscape of mouse and human hematopoietic stem cells under telomere attrition, as induced by pathogenic germline variants in telomerase complex genes. Here, we show that telomere attrition maintains hematopoietic stem cells under persistent metabolic activation and differentiation towards the megakaryocytic lineage through the cell-intrinsic upregulation of the innate immune signaling response, which directly compromises hematopoietic stem cells’ self-renewal capabilities and eventually leads to their exhaustion. Mechanistically, we demonstrate that targeting members of the Ifi20x/IFI16 family of cytosolic DNA sensors using the oligodeoxynucleotide A151, which comprises four repeats of the TTAGGG motif of the telomeric DNA, overcomes interferon signaling activation in telomere-dysfunctional hematopoietic stem cells and these cells’ skewed differentiation towards the megakaryocytic lineage. This study challenges the historical hypothesis that telomere attrition limits the proliferative potential of hematopoietic stem cells by inducing apoptosis, autophagy, or senescence, and suggests that targeting IFI16 signaling axis might prevent hematopoietic stem cell functional decline in conditions affecting telomere maintenance
A Phase 1/2 Study of Azacitidine, Venetoclax and Pevonedistat in Newly Diagnosed Secondary AML and in MDS or CMMLAfter Failure of Hypomethylating Agents
BACKGROUND: Pevonedistat is a first-in-class, small molecular inhibitor of NEDD8-activating enzyme that has clinical activity in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). Preclinical data suggest synergy of pevonedistat with azacitidine and venetoclax.
METHODS: This single-center, phase 1/2 study evaluated the combination of azacitidine, venetoclax and pevonedistat in older adults with newly diagnosed secondary AML or with MDS or chronic myelomonocytic leukemia (CMML) after failure of hypomethylating agents. Patients received azacitidine 75 mg/m
FINDINGS: Forty patients were enrolled (32 with AML and 8 with MDS/CMML). In the AML cohort, the median age was 74 years (range 61-86 years), and 27 patients (84%) had at least one adverse risk cyto-molecular feature, including 15 (47%) with a TP53 mutation or MECOM rearrangement; seventeen patients (53%) had received prior therapy for a preceding myeloid disorder. The CR/CRi rate was 66% (CR 50%; CRi 16%), and the median overall survival (OS) was 8.1 months. In the MDS/CMML cohort, 7 patients (87%) were high or very high risk by the IPSS-R. The overall response rate was 75% (CR 13%; mCR with or without HI 50%; HI 13%). The most common grade 3-4 adverse events were infection in 16 patients (35%), febrile neutropenia in 10 patients (25%) and hypophosphatemia in 9 patients (23%). In an exploratory analysis, early upregulation of NOXA expression was observed, with subsequent decrease in MCL-1 and FLIP, findings consistent with preclinical mechanistic studies of pevonedistat. Upregulation of CD36 was observed, which may have contributed to therapeutic resistance.
CONCLUSIONS: The triplet combination of azacitidine, venetoclax and pevonedistat shows encouraging activity in this very poor-risk population of patients with AML, MDS or CMML. Trial registration ClinicalTrials.gov (NCT03862157)
A Phase 1/2 Study of Azacitidine, Venetoclax and Pevonedistat in Newly Diagnosed Secondary AML and in MDS or CMML After Failure of Hypomethylating Agents
BACKGROUND: Pevonedistat is a first-in-class, small molecular inhibitor of NEDD8-activating enzyme that has clinical activity in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). Preclinical data suggest synergy of pevonedistat with azacitidine and venetoclax.
METHODS: This single-center, phase 1/2 study evaluated the combination of azacitidine, venetoclax and pevonedistat in older adults with newly diagnosed secondary AML or with MDS or chronic myelomonocytic leukemia (CMML) after failure of hypomethylating agents. Patients received azacitidine 75 mg/m
FINDINGS: Forty patients were enrolled (32 with AML and 8 with MDS/CMML). In the AML cohort, the median age was 74 years (range 61-86 years), and 27 patients (84%) had at least one adverse risk cyto-molecular feature, including 15 (47%) with a TP53 mutation or MECOM rearrangement; seventeen patients (53%) had received prior therapy for a preceding myeloid disorder. The CR/CRi rate was 66% (CR 50%; CRi 16%), and the median overall survival (OS) was 8.1 months. In the MDS/CMML cohort, 7 patients (87%) were high or very high risk by the IPSS-R. The overall response rate was 75% (CR 13%; mCR with or without HI 50%; HI 13%). The most common grade 3-4 adverse events were infection in 16 patients (35%), febrile neutropenia in 10 patients (25%) and hypophosphatemia in 9 patients (23%). In an exploratory analysis, early upregulation of NOXA expression was observed, with subsequent decrease in MCL-1 and FLIP, findings consistent with preclinical mechanistic studies of pevonedistat. Upregulation of CD36 was observed, which may have contributed to therapeutic resistance.
CONCLUSIONS: The triplet combination of azacitidine, venetoclax and pevonedistat shows encouraging activity in this very poor-risk population of patients with AML, MDS or CMML. Trial registration ClinicalTrials.gov (NCT03862157)
Targeting DNA2 Overcomes Metabolic Reprogramming in 1q21 Multiple Myeloma
View full abstracthttps://openworks.mdanderson.org/leading-edge/1018/thumbnail.jp
- …