118 research outputs found
On metric geometry of conformal moduli spaces of four-dimensional superconformal theories
Conformal moduli spaces of four-dimensional superconformal theories obtained
by deformations of a superpotential are considered. These spaces possess a
natural metric (a Zamolodchikov metric). This metric is shown to be Kahler. The
proof is based on superconformal Ward identities.Comment: 8 page
Diffuse Neuroendocrine System: Structural and Functional Effects of Radiation Injury to Amine Precursor Uptake and Decarboxylation (APUD) Cells
The paper presents a review of the results obtained by the authors on the study of external (gamma) and internal (I-131) radiation effects on the functional morphology and linkage of the diffuse neuroendocrine system (DNES) and amine precursor uptake and decarboxylation (APUD) cells of the stomach and duodenum. The investigations performed enabled us to determine that the morphological changes noted in APUD cells had a dose and time dependency. The present study supports the point of view that the radiation initiates serotonin release from APUD cells, which appears to initiate the mechanism of early postirradiation dysfunctions of the gastrointestinal tract and the subsequent adaptive response of DNES. Analysis of our results, together with a review of the literature, indicates that APUD cells actively participate both in pathogenesis of radiation injury and development of organ and tissue radiosensitivity
Freezing and melting of 3D complex plasma structures under microgravity conditions driven by neutral gas pressure manipulation
Freezing and melting of large three-dimensional complex plasmas under
microgravity conditions is investigated. The neutral gas pressure is used as a
control parameter to trigger the phase changes: Complex plasma freezes (melts)
by decreasing (increasing) the pressure. Evolution of complex plasma structural
properties upon pressure variation is studied. Theoretical estimates allow us
to identify main factors responsible for the observed behavior.Comment: Phys. Rev. Lett. (in press); 4 pages, 4 figure
Dynamics of lane formation in driven binary complex plasmas
The dynamical onset of lane formation is studied in experiments with binary
complex plasmas under microgravity conditions. Small microparticles are driven
and penetrate into a cloud of big particles, revealing a strong tendency
towards lane formation. The observed time-resolved lane formation process is in
good agreement with computer simulations of a binary Yukawa model with Langevin
dynamics. The laning is quantified in terms of the anisotropic scaling index,
leading to a universal order parameter for driven systems.Comment: 4 pages, 3 figures, movies available at
http://www.mpe.mpg.de/pke/lane-formation
Fluid-solid phase transitions in 3D complex plasmas under microgravity conditions
Phase behavior of large three-dimensional complex plasma systems under
microgravity conditions onboard the International Space Station is
investigated. The neutral gas pressure is used as a control parameter to
trigger phase changes. Detailed analysis of structural properties and
evaluation of three different melting/freezing indicators reveal that complex
plasmas can exhibit melting by increasing the gas pressure. Theoretical
estimates of complex plasma parameters allow us to identify main factors
responsible for the observed behavior. The location of phase states of the
investigated systems on a relevant equilibrium phase diagram is estimated.
Important differences between the melting process of 3D complex plasmas under
microgravity conditions and that of flat 2D complex plasma crystals in ground
based experiments are discussed.Comment: 13 pages, 10 figures; submitted to Phys. Rev.
Dust density waves in a dc flowing complex plasma with discharge polarity reversal
We report on the observation of the self-excited dust density waves in the dc
discharge complex plasma. The experiments were performed under microgravity
conditions in the Plasmakristall-4 facility on board the International Space
Station. In the experiment, the microparticle cloud was first trapped in an
inductively coupled plasma, then released to drift for some seconds in a dc
discharge with constant current. After that the discharge polarity was
reversed. DC plasma containing a drifting microparticle cloud was found to be
strongly non-uniform in terms of microparticle drift velocity and plasma
emission in accord with [Zobnin et.al., Phys. Plasmas 25, 033702 (2018)]. In
addition to that, non-uniformity in the self-excited wave pattern was observed:
In the front edge of the microparticle cloud (defined as head), the waves had
larger phase velocity than in the rear edge (defined as tail). Also, after the
polarity reversal, the wave pattern exhibited several bifurcations: Between
each of the two old wave crests, a new wave crest has formed. These
bifurcations, however, occurred only in the head of the microparticle cloud. We
show that spatial variations of electric field inside the drifting cloud play
an important role in the formation of the wave pattern. Comparison of the
theoretical estimations and measurements demonstrate the significant impact of
the electric field on the phase velocity of the wave. The same theoretical
approach applied to the instability growth rate, showed agreement between
estimated and measured values.Comment: 7 pages, 4 figure
Retinoic Acid Functions as a Key GABAergic Differentiation Signal in the Basal Ganglia
Retinoic acid (RA) is essential for the generation of GABAergic inhibitory neurons in the mouse forebrain, and RA treatment of embryonic stem cells induces the production of GABAergic neurons
What’s retinoic acid got to do with it? Retinoic acid regulation of the neural crest in craniofacial and ocular development
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151310/1/dvg23308.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151310/2/dvg23308_am.pd
- …