1,152 research outputs found
Sparse Inertial Poser: Automatic 3D Human Pose Estimation from Sparse IMUs
We address the problem of making human motion capture in the wild more
practical by using a small set of inertial sensors attached to the body. Since
the problem is heavily under-constrained, previous methods either use a large
number of sensors, which is intrusive, or they require additional video input.
We take a different approach and constrain the problem by: (i) making use of a
realistic statistical body model that includes anthropometric constraints and
(ii) using a joint optimization framework to fit the model to orientation and
acceleration measurements over multiple frames. The resulting tracker Sparse
Inertial Poser (SIP) enables 3D human pose estimation using only 6 sensors
(attached to the wrists, lower legs, back and head) and works for arbitrary
human motions. Experiments on the recently released TNT15 dataset show that,
using the same number of sensors, SIP achieves higher accuracy than the dataset
baseline without using any video data. We further demonstrate the effectiveness
of SIP on newly recorded challenging motions in outdoor scenarios such as
climbing or jumping over a wall.Comment: 12 pages, Accepted at Eurographics 201
LiveCap: Real-time Human Performance Capture from Monocular Video
We present the first real-time human performance capture approach that
reconstructs dense, space-time coherent deforming geometry of entire humans in
general everyday clothing from just a single RGB video. We propose a novel
two-stage analysis-by-synthesis optimization whose formulation and
implementation are designed for high performance. In the first stage, a skinned
template model is jointly fitted to background subtracted input video, 2D and
3D skeleton joint positions found using a deep neural network, and a set of
sparse facial landmark detections. In the second stage, dense non-rigid 3D
deformations of skin and even loose apparel are captured based on a novel
real-time capable algorithm for non-rigid tracking using dense photometric and
silhouette constraints. Our novel energy formulation leverages automatically
identified material regions on the template to model the differing non-rigid
deformation behavior of skin and apparel. The two resulting non-linear
optimization problems per-frame are solved with specially-tailored
data-parallel Gauss-Newton solvers. In order to achieve real-time performance
of over 25Hz, we design a pipelined parallel architecture using the CPU and two
commodity GPUs. Our method is the first real-time monocular approach for
full-body performance capture. Our method yields comparable accuracy with
off-line performance capture techniques, while being orders of magnitude
faster
Severe Hypoglycemia due to Isolated ACTH Deficiency in Children: A New Case Report and Review of the Literature
Isolated ACTH deficiency causes life-threatening severe hypoglycemia. A 7-year-old girl with hypoglycemia due to this rare disorder is described. Our patient had undetectable plasma ACTH repeatedly and cortisol 0 mcg/dl before and after ACTH 1-24 stimulation. There was no evidence of other pituitary hormone deficiency. Glucocorticoid replacement therapy resulted in resolution of all symptoms and normalization of blood glucose. Previously published data on isolated ACTH deficiency in children is summarized. Review of the literature showed that the prevalence of this condition could be underestimated in the neonatal period and in Prader-Willi syndrome. Isolated ACTH deficiency occurs in older children as well as in neonates
- …