10 research outputs found

    The nucleotide sequence of a third cyclophilin-homologous gene from Saccharomyces cerevisiae

    No full text
    The nucleotide sequence of a 1558 bp DNA fragment from the right arm of chromosome III of Saccharomyces cerevisiae contains an open reading frame of 954 nucleotides with coding potential for a protein with high similarity to the ubiquitous cyclophilins which are both peptidyl-prolyl cis-trans isomerases and cyclosporin A-binding proteins. It should, therefore, represent the third gene (SCC3) of this kind from S. cerevisiae. SCC3 is present in a single copy in the genome of S. cerevisiae and results in a constitutively expressed 1.2 kb transcript during cell growth. Its putative protein product (Scc3) contains two hydrophobic cores, one at the amino terminal, 20 amino acids long, which could serve as a signal peptide, and the other one at the carboxyl end with a structure similar to a transmembrane helix. These findings suggest that Scc3 could be a secretory or, more likely, a transmembrane protein. The only cyclophilin with similar structure to that of Scc3 is ninaA from Drosophila melanogaster, a transmembrane protein which seems to be implicated in the correct folding and/or intercalation of rhodopsin in the endoplasmic reticulum of the fly photoreceptors (Stamnes, M.A. et al., Cell 65, 219-227, 1991). In addition, the amino and the carboxy regions of Scc3 and ninaA share a significant level of homology, which suggests that they have a similar function, albeit for different target proteins

    Characterization of seven murine caspase family members

    Get PDF
    AbstractSeven members of the murine caspase (mCASP) family were cloned and functionally characterized by transient overexpression: mCASP-1 (mICE), mCASP-2 (Ich1), mCASP-3 (CPP32), mCASP-6 (Mch2), mCASP-7 (Mch3), mCASP-11 (TX) and mCASP-12. mCASP-11 is presumably the murine homolog of human CASP-4. Although mCASP-12 is related to human CASP-5 (ICErel-III), it is most probably a new CASP-1 family member. On the basis of sequence homology, the caspases can be divided into three subfamilies: first, mCASP-1, mCASP-11 and mCASP-12; second, mCASP-2; third, mCASP-3, mCASP-6 and mCASP-7. The tissue distribution of the CASP-1 subfamily transcripts is more restricted than that of the CASP-3 subfamily transcripts, suggesting that the transcriptional regulation of the CASP members within one subfamily is related, but is quite different between the CASP-1 and the CASP-3 subfamilies. Transient overexpression of each of the seven CASPs induced apoptosis in mammalian cells. Only two, mCASP-1 as well as mCASP-3, were able to process precursor interleukin (IL)-1β to biologically active IL-1β. In addition, mCASP-3 is the predominant PARP-cleaving enzyme in vivo.© 1997 Federation of European Biochemical Societies
    corecore