2,067 research outputs found

    Geometry-material coordination for passive adaptive solar morphing envelopes

    Get PDF
    The cost-intensive and mechanical complexity natures of the adaptive facades of the past decades drifted designers and researchers’ interest towards passive material-based actuation systems. Architectural applications using the latter showed, however, a few limitations restricting the output possibility space to options that rely entirely on one material’s phase characteristic. This study aims to investigate the potential of expanding a shape memory alloy-actuated facade’s output from one that is limited and hardly controllable in the case of entirely passive actuation to one that can produce a specific desired performative target. This is explored through coordinating between geometry movement connections of an adaptive component of four integrated shape memory alloys, which work on tailoring the geometry-material-climate relations of the responsive system. The research findings suggest that the integration of geometry, material, and their connections in the design of a SMA solar morphing envelope lead to the development of a wider range of behavioural system outputs. The variety instilled through these added dimensions promoted diversity and adaptability of output for a flexible range of responses and higher performative gains

    Neighbourhood Shading Impacts on Passive Adaptive Façade Collective Behaviour

    Get PDF
    The past decade witnessed a shift in adaptive facades from energy-intensive complex systems to material-based actuated facades. The latter, however, were only developed with limited control in shape memory alloy applications, and more generally designed as independent components. The perception of the component within a system as a self-regulating entity was shown to widen the behavioural response and intelligence of an adaptive system in several projects. On the other hand, its range of impact and integration as a design factor were not targeted at full breadth in the literature. The study’s objective was to investigate the incorporation of neighbourhood shading behaviour of a shape memory alloy-actuated façade component on the entire system. Based on a designed adaptive component, the research identifies the shading impact on the actuators’ incident solar radiation as well as its hourly and seasonal range, and thus encourages a better prediction of collective behaviour

    Scalar Fields Nonminimally Coupled to pp Waves

    Get PDF
    Here, we report pp waves configurations of three-dimensional gravity for which a scalar field nonminimally coupled to them acts as a source. In absence of self-interaction the solutions are gravitational plane waves with a profile fixed in terms of the scalar wave. In the self-interacting case, only power-law potentials parameterized by the nonminimal coupling constant are allowed by the field equations. In contrast with the free case the self-interacting scalar field does not behave like a wave since it depends only on the wave-front coordinate. We address the same problem when gravitation is governed by topologically massive gravity and the source is a free scalar field. From the pp waves derived in this case, we obtain at the zero topological mass limit, new pp wave solutions of conformal gravity for any arbitrary value of the nonminimal coupling parameter. Finally, we extend these solutions to the self-interacting case of conformal gravity.Comment: 14 pages, RevTeX. Minor changes. To appear in Phys. Rev.

    Exploring AdS Waves Via Nonminimal Coupling

    Full text link
    We consider nonminimally coupled scalar fields to explore the Siklos spacetimes in three dimensions. Their interpretation as exact gravitational waves propagating on AdS restrict the source to behave as a pure radiation field. We show that the related pure radiation constraints single out a unique self-interaction potential depending on one coupling constant. For a vanishing coupling constant, this potential reduces to a mass term with a mass fixed in terms of the nonminimal coupling parameter. This mass dependence allows the existence of several free cases including massless and tachyonic sources. There even exists a particular value of the nonminimal coupling parameter for which the corresponding mass exactly compensates the contribution generated by the negative scalar curvature, producing a genuinely massless field in this curved background. The self-interacting case is studied in detail for the conformal coupling. The resulting gravitational wave is formed by the superposition of the free and the self-interaction contributions, except for a critical value of the coupling constant where a non-perturbative effect relating the strong and weak regimes of the source appears. We establish a correspondence between the scalar source supporting an AdS wave and a pp wave by showing that their respective pure radiation constraints are conformally related, while their involved backgrounds are not. Finally, we consider the AdS waves for topologically massive gravity and its limit to conformal gravity.Comment: 26 pages, 1 figure. Minor change

    Higher-dimensional black holes with a conformally invariant Maxwell source

    Get PDF
    We consider an action for an abelian gauge field for which the density is given by a power of the Maxwell Lagrangian. In d spacetime dimensions this action is shown to enjoy the conformal invariance if the power is chosen as d/4. We take advantage of this conformal invariance to derive black hole solutions electrically charged with a purely radial electric field. Because of considering power of the Maxwell density, the black hole solutions exist only for dimensions which are multiples of four. The expression of the electric field does not depend on the dimension and corresponds to the four-dimensional Reissner-Nordstrom field. Using the Hamiltonian action we identify the mass and the electric charge of these black hole solutions.Comment: 5 page

    Role of phosphoric acid on the corrosion performance of Pb-1.7%Sb gridof lead-acid batteries

    Get PDF
    The corrosion behavior of a commercial Pb-1.7% Sb gridof lead-acid batteries under open circuit conditions in 5M H 2SO4 in the presence of phosphoric acid is studiedby electrochemical impedance spectroscopy and cyclicvoltammetry. Dependence of corrodibility of the alloy onH 3PO4 concentration is weak up to 0.7M. After days ofcorrosion, the corrosion rate in the presence of H 3PO4 isslightly higher than in its absence, due to retardation of the growth of an insulating PbSO 4 layer that acts as an effective diffusion barrier of the corrosive species. The electronic and diffusion properties of the passive layer formed in the presence of H 3PO4 are substantially inferior. Cyclic voltammetry indicates a decrease in amounts of PbSO 4 and Sb 2O3 formed in the presence of H3PO4 and with increasing its concentration. Also, the amount of PbO formed beneath the PbSO 4 layer increases with increasing H3PO4 concentration on the expense of the amount of PbSO 4
    corecore