68 research outputs found

    HAPLN1 potentiates peritoneal metastasis in pancreatic cancer

    Full text link
    The presence of peritoneal metastasis in pancreatic cancers is associated with poor prognosis. Here the authors show that hyaluronan and proteoglycan link protein-1 (HAPLN1) promotes tumour cell plasticity and pro-tumoral immune microenvironment to facilitate peritoneal dissemination in pancreatic cancers. Pancreatic ductal adenocarcinoma (PDAC) frequently metastasizes into the peritoneum, which contributes to poor prognosis. Metastatic spreading is promoted by cancer cell plasticity, yet its regulation by the microenvironment is incompletely understood. Here, we show that the presence of hyaluronan and proteoglycan link protein-1 (HAPLN1) in the extracellular matrix enhances tumor cell plasticity and PDAC metastasis. Bioinformatic analysis showed that HAPLN1 expression is enriched in the basal PDAC subtype and associated with worse overall patient survival. In a mouse model for peritoneal carcinomatosis, HAPLN1-induced immunomodulation favors a more permissive microenvironment, which accelerates the peritoneal spread of tumor cells. Mechanistically, HAPLN1, via upregulation of tumor necrosis factor receptor 2 (TNFR2), promotes TNF-mediated upregulation of Hyaluronan (HA) production, facilitating EMT, stemness, invasion and immunomodulation. Extracellular HAPLN1 modifies cancer cells and fibroblasts, rendering them more immunomodulatory. As such, we identify HAPLN1 as a prognostic marker and as a driver for peritoneal metastasis in PDAC

    Elevated expression of c-kit in small venous malformations of blue rubber bleb nevus syndrome

    Get PDF
    The blue rubber bleb nevus syndrome (BRBNS, syn. bean syndrome) is a rare disease characterized by multiple cutaneous and gastrointestinal venous malformations associated with severe bleeding. However, the underlying molecular mechanisms are unknown and no targeted therapeutic approach exists to date. Here we report the case of a 19-year-old male patient with severe BRBNS in whom we analyzed the expression of tyrosine kinases frequently involved in tumor development by immunohistochemistry (vascular endothelial growth factor receptor-2, stem cell growth factor receptor (c-kit), platelet-derived growth factor receptor-β, and stem cell tyrosine kinase-1). A prominent expression of c-kit was detectable in smaller blood vessels, which also showed a moderate expression of the proliferation marker MIB1. Surprisingly, other growth factor receptors stained negatively. We therefore conclude that pharmacological inhibition of the c-kit signaling pathway in cavernous hemangiomas by selective kinase inhibitors may offer options in the treatment of BRBNS patients

    Low expression of aldehyde deyhdrogenase 1A1 (ALDH1A1) is a prognostic marker for poor survival in pancreatic cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aldehyde deyhdrogenase 1 (ALDH1) has been characterised as a cancer stem cell marker in different types of tumours. Additionally, it plays a pivotal role in gene regulation and endows tumour cells with augmented chemoresistance. Recently, ALDH1A1 has been described as a prognostic marker in a pancreatic cancer tissue microarray. The aim of this study was to reevaluate the expression of ALDH1A1 as a prognostic marker on whole-mount tissue sections.</p> <p>Methods</p> <p>Real-time-quantitative-PCR (qRT-PCR) and Western blotting were used to evaluate the expression profile of ALDH1A1 in seven pancreatic cancer cell lines and one non-malignant pancreatic cell line. Immunostaining against ALDH1A1 and Ki-67 was performed on paraffin-embedded samples from 97 patients with pancreatic cancer. The immunohistochemical results were correlated to histopathological and clinical data.</p> <p>Results</p> <p>qRT-PCR and Western blotting revealed a different expression pattern of ALDH1A1 in different malignant and non-malignant pancreatic cell lines. Immunohistochemical analysis demonstrated that ALDH1A1 was confined to the cellular cytoplasm and occurred in 72 cases (74%), whereas it was negative in 25 cases (26%). High expression of ALDH1A1 was significantly correlated to an increased proliferation rate (Spearman correlation, p = 0.01). Univariate and multivariate analyses showed that decreased expression of ALDH1A1 is an independent adverse prognostic factor for overall survival.</p> <p>Conclusions</p> <p>Immunonhistochemical analysis on whole-mount tissue slides revealed that ALDH1A1 is more abundantly expressed in pancreatic cancer than initially reported by a tissue microarray analysis. Moreover, high expression of ALDH1A1 correlated significantly with the proliferation of tumour cells. Intriguingly, this study is the first which identifies low expression of ALDH1A1 as an independent adverse prognostic marker for overall survival in pancreatic cancer.</p

    Syndecan-1 and FGF-2, but Not FGF Receptor-1, Share a Common Transport Route and Co-Localize with Heparanase in the Nuclei of Mesenchymal Tumor Cells

    Get PDF
    Syndecan-1 forms complexes with growth factors and their cognate receptors in the cell membrane. We have previously reported a tubulin-mediated translocation of syndecan-1 to the nucleus. The transport route and functional significance of nuclear syndecan-1 is still incompletely understood. Here we investigate the sub-cellular distribution of syndecan-1, FGF-2, FGFR-1 and heparanase in malignant mesenchymal tumor cells, and explore the possibility of their coordinated translocation to the nucleus. To elucidate a structural requirement for this nuclear transport, we have transfected cells with a syndecan-1/EGFP construct or with a short truncated version containing only the tubulin binding RMKKK sequence. The sub-cellular distribution of the EGFP fusion proteins was monitored by fluorescence microscopy. Our data indicate that syndecan-1, FGF-2 and heparanase co-localize in the nucleus, whereas FGFR-1 is enriched mainly in the perinuclear area. Overexpression of syndecan-1 results in increased nuclear accumulation of FGF-2, demonstrating the functional importance of syndecan-1 for this nuclear transport. Interestingly, exogenously added FGF-2 does not follow the route taken by endogenous FGF-2. Furthermore, we prove that the RMKKK sequence of syndecan-1 is necessary and sufficient for nuclear translocation, acting as a nuclear localization signal, and the Arginine residue is vital for this localization. We conclude that syndecan-1 and FGF-2, but not FGFR-1 share a common transport route and co-localize with heparanase in the nucleus, and this transport is mediated by the RMKKK motif in syndecan-1. Our study opens a new perspective in the proteoglycan field and provides more evidence of nuclear interactions of syndecan-1

    Correlation of in vivo imaging to morphomolecular pathology in translational research: challenge accepted

    No full text
    Correlation of in vivo imaging to histomorphological pathology in animal models requires comparative interdisciplinary expertise of different fields of medicine. From the morphological point of view, there is an urgent need to improve histopathological evaluation in animal model-based research to expedite translation into clinical applications. While different other fields of translational science were standardized over the last years, little was done to improve the pipeline of experimental pathology to ensure reproducibility based on pathological expertise in experimental animal models with respect to defined guidelines and classifications. Additionally, longitudinal analyses of preclinical models often use a variety of imaging methods and much more attention should be drawn to enable for proper co-registration of in vivo imaging methods with the ex vivo morphological read-outs. Here we present the development of the Comparative Experimental Pathology (CEP) unit embedded in the Institute of Pathology of the Technical University of Munich during the Collaborative Research Center 824 (CRC824) funding period together with selected approaches of histomorphological techniques for correlation of in vivo imaging to morphomolecular pathology

    Endosialin-Expressing Pericytes Promote Metastatic Dissemination

    No full text
    Metastasis is a multistep process that is critically dependent on the interaction of metastasizing tumor cells with cells in the local microenvironment. Within this tumor stroma, vessel-associated pericytes and myofibroblasts share a number of traits, including the upregulated expression of the transmembrane receptor endosialin (CD248). Comparative experiments in wild-type and endosialin-deficient mice revealed that stromal endosialin does not affect primary tumor growth but strongly promotes spontaneous metastasis. Mechanistically, endosialin-expressing pericytes in the primary tumor facilitate distant site metastasis by promoting tumor cell intravasation in a cell contact-dependent manner, resulting in elevated numbers of circulating tumor cells. Corresponding to these preclinical experiments, in independent cohorts of primary human breast cancers, upregulated endosialin expression significantly correlates with increased metastasis and poorer patient survival. Together, the data demonstrate a critical role for endosialin-expressing primary tumor pericytes in mediating metastatic dissemination and identify endosialin as a promising therapeutic target in breast cancer. (C) 2016 AACR
    • …
    corecore