53 research outputs found

    Photo-induced doping and strain in exfoliated graphene

    Get PDF
    Copyright © 2013 American Institute of PhysicsFile "01 flake before modification.jpg" is a microscope picture of a monolayer graphene flake before photomodification. Files "02 Raman map before modification 2D.txt" and "02 Raman map before modification G+D.txt" contain Raman data for the flake before modification. The columns in the files are [X coordinate; Y coordinate; Raman shift; intensity;]. The first file contains data for Raman shifts from 2470 to 2916 cm-1, the second file - data for shifts from 1306 to 1840 cm-1. File “03 PL image before modification.tif” is an Up-converted photoluminescence image of the flake before photomodification. File “04 PL image after modification.tif” is an Up-converted photoluminescence image of the flake after photomodification. File “05 flake after modification.jpg” is a microscope picture of a monolayer graphene flake after photomodification. Files “06 Raman map after modification 2D.txt” and “06 Raman map after modification G+D.txt” are Raman data for the flake after modification. File “07 AFM data.txt” is AFM data for a modified area of a monolayer graphene sample.The modification of single layer graphene due to intense, picoseconds near-infrared laser pulses is investigated. We monitor the stable changes introduced to graphene upon photoexcitation using Raman spectroscopy. We find that photoexcitation leads to both a local increase in hole doping and a reduction in compressive strain. Possible explanations for these effects, due to photo-induced oxygenation and photo-induced buckling of the graphene, are discussed.CEMPS Research Project Studentshi

    Imaging the uptake of gold nanoshells in live cells using plasmon resonance enhanced four wave mixing microscopy

    Get PDF
    This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.19.017563. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.Gold nanoshells (GNS) are novel metal nanoparticles exhibiting attractive optical properties which make them highly suitable for biophotonics applications. We present a novel investigation using plasmon-enhanced four wave mixing microscopy combined with coherent anti-Stokes Raman scattering (CARS) microscopy to visualize the distribution of 75 nm radius GNS within live cells. During a laser tolerance study we found that cells containing nanoshells could be exposed to < 2.5 mJ each with no photo-thermally induced necrosis detected, while cell death was linearly proportional to the power over this threshold. The majority of the GNS signal detected was from plasmon-enhanced four wave mixing (FWM) that we detected in the epi-direction with the incident lasers tuned to the silent region of the Raman spectrum. The cellular GNS distribution was visualized by combining the epi-detected signal with forwards-detected CARS at the CH2 resonance. The applicability of this technique to real-world nanoparticle dosing problems was demonstrated in a study of the effect of H2S on nanoshell uptake using two donor molecules, NaHS and GYY4137. As GYY4137 concentration was increased from 10 µM to 1 mM, the nanoshell pixel percentage as a function of cell volume (PPCV) increased from 2.15% to 3.77%. As NaHS concentration was increased over the same range, the nanoshell PPCV decreased from 12.67% to 11.47%. The most important factor affecting uptake in this study was found to be the rate of H2S release, with rapid-release from NaHS resulting in significantly greater uptake

    Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering

    Get PDF
    This is the pre-peer reviewed version of the following article: Mansfield, J., Moger, J., Green, E., Moger, C. and Winlove, C. P. (2013), Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering. J. Biophoton., 6: 803–814. doi: 10.1002/jbio.201200213, which has been published in final form at http://dx.doi.org/10.1002/jbio.201200213.© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimStimulated Raman scattering (SRS) has been applied to unstained samples of articular cartilage enabling the investigation of living cells within fresh tissue. Hyperspectral SRS measurements over the CH vibrational region showed variations in protein and lipid content within the cells, pericellular matrix and interterritorial matrix. Changes in the cells and pericellular matrix were investigated as a function of depth into the cartilage. Lipid was detected in the pericellular matrix of superficial zone chondrocytes. The spectral profile of lipid droplets within the chondrocytes indicated that they contained predominantly unsaturated lipids. The mineral content has been imaged by using the PO₄³⁻ vibration at 959 cm⁻¹ and the CO₃²⁻ vibration at 1070 cm⁻¹. Both changes in cells and mineralization are known to be important factors in the progression of osteoarthritis. SRS enables these to be visualized in fresh unstained tissue and consequently should benefit osteoarthiritis research

    Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy

    Get PDF
    Jessica C. Mansfield ; C. Peter Winlove ; Julian Moger and Steve J. Matcher "Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy", J. Biomed. Opt. 13(4), 044020 (July 15, 2008). Copyright © 2008 Society of Photo-Optical Instrumentation EngineersSecond harmonic generation (SHG) and two-photon fluorescence (TPF) microscopy is used to image the intercellular and pericellular matrix in normal and degenerate equine articular cartilage. The polarization sensitivity of SHG can be used directly to determine fiber orientation in the superficial 10 to 20 microm of tissue, and images of the ratio of intensities taken with two orthogonal polarization states reveal small scale variations in the collagen fiber organization that have not previously been reported. The signal from greater depths is influenced by the birefringence and biattenuance of the overlying tissue. An assessment of these effects is developed, based on the analysis of changes in TPF polarization with depth, and the approach is validated in tendon where composition is independent of depth. The analysis places an upper bound on the biattenuance of tendon of 2.65 x 10(-4). Normal cartilage reveals a consistent pattern of variation in fibril orientation with depth. In lesions, the pattern is severely disrupted and there are changes in the pericellular matrix, even at the periphery where the tissue appears microscopically normal. Quantification of polarization sensitivity changes with depth in cartilage will require detailed numerical models, but in the meantime, multiphoton microscopy provides sensitive indications of matrix changes in cartilage degeneration

    Bioavailability of nanoscale metal oxides TiO(2), CeO(2), and ZnO to fish

    Get PDF
    addresses: The Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK.types: Journal Article; Research Support, Non-U.S. Gov'tCopyright © 2010 American Chemical Society. Post print version of article deposited. The final published version is available from: http://dx.doi.org/10.1021/es901971aNanoparticles (NPs) are reported to be a potential environmental health hazard. For organisms living in the aquatic environment, there is uncertainty on exposure because of a lack of understanding and data regarding the fate, behavior, and bioavailability of the nanomaterials in the water column. This paper reports on a series of integrative biological and physicochemical studies on the uptake of unmodified commercial nanoscale metal oxides, zinc oxide (ZnO), cerium dioxide (CeO(2)), and titanium dioxide (TiO(2)), from the water and diet to determine their potential ecotoxicological impacts on fish as a function of concentration. Particle characterizations were performed and tissue concentrations were measured by a wide range of analytical methods. Definitive uptake from the water column and localization of TiO(2) NPs in gills was demonstrated for the first time by use of coherent anti-Stokes Raman scattering (CARS) microscopy. Significant uptake of nanomaterials was found only for cerium in the liver of zebrafish exposed via the water and ionic titanium in the gut of trout exposed via the diet. For the aqueous exposures undertaken, formation of large NP aggregates (up to 3 mum) occurred and it is likely that this resulted in limited bioavailability of the unmodified metal oxide NPs in fish

    Molecular diffusion in the human nail measured by stimulated Raman scattering microscopy

    Get PDF
    Journal ArticleResearch Support, Non-U.S. Gov'tauthors' post-print versionThe effective treatment of diseases of the nail remains an important unmet medical need, primarily because of poor drug delivery. To address this challenge, the diffusion, in real time, of topically applied chemicals into the human nail has been visualized and characterized using stimulated Raman scattering (SRS) microscopy. Deuterated water (D2O), propylene glycol (PG-d8), and dimethyl sulphoxide (DMSO-d6) were separately applied to the dorsal surface of human nail samples. SRS microscopy was used to image D2O, PG-d8/DMSO-d6, and the nail through the O-D, -CD2, and -CH2 bond stretching Raman signals, respectively. Signal intensities obtained were measured as functions of time and of depth into the nail. It was observed that the diffusion of D2O was more than an order of magnitude faster than that of PG-d8 and DMSO-d6. Normalization of the Raman signals, to correct in part for scattering and absorption, permitted semiquantitative analysis of the permeation profiles and strongly suggested that solvent diffusion diverged from classical behavior and that derived diffusivities may be concentration dependent. It appeared that the uptake of solvent progressively undermined the integrity of the nail. This previously unreported application of SRS has permitted, therefore, direct visualization and semiquantitation of solvent penetration into the human nail. The kinetics of uptake of the three chemicals studied demonstrated that each altered its own diffusion in the nail in an apparently concentration-dependent fashion. The scale of the unexpected behavior observed may prove beneficial in the design and optimization of drug formulations to treat recalcitrant nail disease

    Drug delivery into microneedle-porated nails from nanoparticle reservoirs

    Get PDF
    Copyright © 2015. Published by Elsevier B.V.Author's post-print version. The definitive version is available from the publisher via doi: 10.1016/j.jconrel.2015.10.026This study demonstrates the potential of polymeric nanoparticles as drug reservoirs for sustained topical drug delivery into microneedle-treated human nail. Laser scanning confocal microscopy was used to image the delivery of a fluorescent model compound from nanoparticles into the nail. A label-free imaging technique, stimulated Raman scattering microscopy, was applied, in conjunction with two-photon fluorescence imaging, to probe the disposition of nanoparticles and an associated lipophilic 'active' in a microneedle-porated nail. The results provide clear evidence that the nanoparticles function as immobile reservoirs, sequestered on the nail surface and in the microneedle-generated pores, from which the active payload can be released and diffuse laterally into the nail over an extended period of time
    corecore