2,038 research outputs found

    Fractal Structure of Loop Quantum Gravity

    Full text link
    In this paper we have calculated the spectral dimension of loop quantum gravity (LQG) using simple arguments coming from the area spectrum at different length scales. We have obtained that the spectral dimension of the spatial section runs from 2 to 3, across a 1.5 phase, when the energy of a probe scalar field decrees from high to low energy. We have calculated the spectral dimension of the space-time also using results from spin-foam models, obtaining a 2-dimensional effective manifold at hight energy. Our result is consistent with other two approach to non perturbative quantum gravity: causal dynamical triangulation and asymptotic safety quantum gravity.Comment: 5 pages, 5 figure

    Spectral dimension of a quantum universe

    Full text link
    In this paper, we calculate in a transparent way the spectral dimension of a quantum spacetime, considering a diffusion process propagating on a fluctuating manifold. To describe the erratic path of the diffusion, we implement a minimal length by averaging the graininess of the quantum manifold in the flat space case. As a result we obtain that, for large diffusion times, the quantum spacetime behaves like a smooth differential manifold of discrete dimension. On the other hand, for smaller diffusion times, the spacetime looks like a fractal surface with a reduced effective dimension. For the specific case in which the diffusion time has the size of the minimal length, the spacetime turns out to have a spectral dimension equal to 2, suggesting a possible renormalizable character of gravity in this regime. For smaller diffusion times, the spectral dimension approaches zero, making any physical interpretation less reliable in this extreme regime. We extend our result to the presence of a background field and curvature. We show that in this case the spectral dimension has a more complicated relation with the diffusion time, and conclusions about the renormalizable character of gravity become less straightforward with respect to what we found with the flat space analysis.Comment: 5 pages, 1 figure, references added, typos corrected, title changed, final version published in Physical Review

    Charged rotating noncommutative black holes

    Full text link
    In this paper we complete the program of the noncomutative geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newman-Janis algorithm in the case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.Comment: 13 pages, 3 figures, correction of a typesetting inattention, updated reference list, version accepted for publication on Physical Review

    Gravitational collapse in loop quantum gravity

    Get PDF
    In this paper we study the gravitational collapse in loop quantum gravity. We consider the space-time region inside the Schwarzschild black hole event horizon and we divide this region in two parts, the first one where the matter (dust matter) is localized and the other (outside) where the metric is Kantowski-Sachs type. We calculate the state solving Hamiltonian constraint and we obtain a set of three difference equations that give a regular and natural evolution beyond the classical singularity point in "r=0" localized.Comment: 16 pages, 2 figure

    Unattainable extended spacetime regions in conformal gravity

    Full text link
    The Janis-Newman-Winicour metric is a solution of Einstein's gravity minimally coupled to a real massless scalar field. The γ\gamma-metric is instead a vacuum solution of Einstein's gravity. These spacetimes have no horizon and possess a naked singularity at a finite value of the radial coordinate, where curvature invariants diverge and the spacetimes are geodetically incomplete. In this paper, we reconsider these solutions in the framework of conformal gravity and we show that it is possible to solve the spacetime singularities with a suitable choice of the conformal factor. Now curvature invariants remain finite over the whole spacetime. Massive particles never reach the previous singular surface and massless particles can never do it with a finite value of their affine parameter. Our results support the conjecture according to which conformal gravity can fix the singularity problem that plagues Einstein's gravity.Comment: 1+10 pages, 2 figures. v2: refereed versio

    Occurrence of exact R2R^2 inflation in non-local UV-complete gravity

    Full text link
    The R+R2R+R^2, shortly named "R2R^2" ("Starobinsky") inflationary model, represents a fully consistent example of a one-parameter inflationary scenario. This model has a "graceful exit" from inflation and provides a mechanism for subsequent creation and final thermalization of the standard matter. Moreover, it produces a very good fit of the observed spectrum of primordial perturbations. In the present paper we show explicitly that the R2R^2 inflationary spacetime is an exact solution of a range of weakly non-local (quasi-polynomial) gravitational theories, which provide an ultraviolet completion of the R2R^2 theory. These theories are ghost-free, super-renormalizable or finite at quantum level, and perturbatively unitary. Their spectrum consists of the graviton and the scalaron that is responsible for driving the inflation. Notably, any further extension of the spectrum leads to propagating ghost degrees of freedom. We are aimed at presenting a detailed construction of such theories in the so called Weyl basis. Further, we give a special account to the cosmological implications of this theory by considering perturbations during inflation. The highlight of the non-local model is the prediction of a modified, in comparison to a local R2R^2 model, value for the ratio of tensor and scalar power spectra rr, depending on the parameters of the theory. The relevant parameters are under control to be successfully confronted with existing observational data. Furthermore, the modified rr can surely meet future observational constraints.Comment: 41 pages; minor corrections and presentation improvement; matches the published versio

    Self-completeness and spontaneous dimensional reduction

    Get PDF
    A viable quantum theory of gravity is one of the biggest challenges facing physicists. We discuss the confluence of two highly expected features which might be instrumental in the quest of a finite and renormalizable quantum gravity -- spontaneous dimensional reduction and self-completeness. The former suggests the spacetime background at the Planck scale may be effectively two-dimensional, while the latter implies a condition of maximal compression of matter by the formation of an event horizon for Planckian scattering. We generalize such a result to an arbitrary number of dimensions, and show that gravity in higher than four dimensions remains self-complete, but in lower dimensions it is not. In such a way we established an "exclusive disjunction" or "exclusive or" (XOR) between the occurrence of self-completeness and dimensional reduction, with the goal of actually reducing the unknowns for the scenario of the physics at the Planck scale. Potential phenomenological implications of this result are considered by studying the case of a two-dimensional dilaton gravity model resulting from dimensional reduction of Einstein gravity.Comment: 12 pages, 3 figures; v3: final version in press on Eur. Phys. J. Plu

    Positive Leadership

    Get PDF

    Sub-Planckian black holes and the Generalized Uncertainty Principle

    Get PDF
    The Black Hole Uncertainty Principle correspondence suggests that there could exist black holes with mass beneath the Planck scale but radius of order the Compton scale rather than Schwarzschild scale. We present a modified, self-dual Schwarzschild-like metric that reproduces desirable aspects of a variety of disparate models in the sub-Planckian limit, while remaining Schwarzschild in the large mass limit. The self-dual nature of this solution under MM1M \leftrightarrow M^{-1} naturally implies a Generalized Uncertainty Principle with the linear form Δx1Δp+Δp\Delta x \sim \frac{1}{\Delta p} + \Delta p. We also demonstrate a natural dimensional reduction feature, in that the gravitational radius and thermodynamics of sub-Planckian objects resemble that of (1+1)(1+1)-D gravity. The temperature of sub-Planckian black holes scales as MM rather than M1M^{-1} but the evaporation of those smaller than 103610^{-36}g is suppressed by the cosmic background radiation. This suggests that relics of this mass could provide the dark matter.Comment: 12 pages, 9 figures, version published in J. High En. Phy
    corecore