255 research outputs found

    A remark on the Restricted Isometry Property in Orthogonal Matching Pursuit

    Full text link
    This paper demonstrates that if the restricted isometry constant δK+1\delta_{K+1} of the measurement matrix AA satisfies δK+1<1K+1, \delta_{K+1} < \frac{1}{\sqrt{K}+1}, then a greedy algorithm called Orthogonal Matching Pursuit (OMP) can recover every KK--sparse signal x\mathbf{x} in KK iterations from A\x. By contrast, a matrix is also constructed with the restricted isometry constant δK+1=1K \delta_{K+1} = \frac{1}{\sqrt{K}} such that OMP can not recover some KK-sparse signal x\mathbf{x} in KK iterations. This result positively verifies the conjecture given by Dai and Milenkovic in 2009

    Compactly Supported Tensor Product Complex Tight Framelets with Directionality

    Full text link
    Although tensor product real-valued wavelets have been successfully applied to many high-dimensional problems, they can only capture well edge singularities along the coordinate axis directions. As an alternative and improvement of tensor product real-valued wavelets and dual tree complex wavelet transform, recently tensor product complex tight framelets with increasing directionality have been introduced in [8] and applied to image denoising in [13]. Despite several desirable properties, the directional tensor product complex tight framelets constructed in [8,13] are bandlimited and do not have compact support in the space/time domain. Since compactly supported wavelets and framelets are of great interest and importance in both theory and application, it remains as an unsolved problem whether there exist compactly supported tensor product complex tight framelets with directionality. In this paper, we shall satisfactorily answer this question by proving a theoretical result on directionality of tight framelets and by introducing an algorithm to construct compactly supported complex tight framelets with directionality. Our examples show that compactly supported complex tight framelets with directionality can be easily derived from any given eligible low-pass filters and refinable functions. Several examples of compactly supported tensor product complex tight framelets with directionality have been presented

    A new proof of some polynomial inequalities related to pseudo-splines

    Get PDF
    AbstractPseudo-splines of type I were introduced in [I. Daubechies, B. Han, A. Ron, Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14 (2003) 1–46] and [Selenick, Smooth wavelet tight frames with zero moments, Appl. Comput. Harmon. Anal. 10 (2000) 163–181] and type II were introduced in [B. Dong, Z. Shen, Pseudo-splines, wavelets and framelets, Appl. Comput. Harmon. Anal. 22 (2007) 78–104]. Both types of pseudo-splines provide a rich family of refinable functions with B-splines, interpolatory refinable functions and refinable functions with orthonormal shifts as special examples. In [B. Dong, Z. Shen, Pseudo-splines, wavelets and framelets, Appl. Comput. Harmon. Anal. 22 (2007) 78–104], Dong and Shen gave a regularity analysis of pseudo-splines of both types. The key to regularity analysis is Proposition 3.2 in [B. Dong, Z. Shen, Pseudo-splines, wavelets and framelets, Appl. Comput. Harmon. Anal. 22 (2007) 78–104], which also appeared in [A. Cohen, J.P. Conze, Régularité des bases d'ondelettes et mesures ergodiques, Rev. Mat. Iberoamericana 8 (1992) 351–365] and [I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics, SIAM, Philadelphia, 1992] for the case l=N−1. In this note, we will give a new insight into this proposition

    New bounds on the restricted isometry constant δ2k

    Get PDF
    AbstractRestricted isometry constants play an important role in compressed sensing. In the literature, E.J. Candès has proven that δ2k<2−1≈0.4142 is a sufficient condition for the l1 minimization problem having a k-sparse solution. Later, S. Foucart and M. Lai have improved the condition to δ2k<0.4531 and S. Foucart has improved the bound to δ2k<0.4652. In 2010, T. Cai, L. Wang and G. Xu have improved the condition to δ2k<0.4721 for the cases such that k is a multiple of 4 or k is very large and S. Foucart has improved the bound to δ2k<0.4734 for large values of k. In this paper, we have improved the sufficient condition to δ2k<0.4931 for general k. Also, in some special cases, the sufficient condition can be improved to δ2k<0.6569. These new bounds have several benefits on recovering compressible signals with noise

    WaveletQuant, an improved quantification software based on wavelet signal threshold de-noising for labeled quantitative proteomic analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantitative proteomics technologies have been developed to comprehensively identify and quantify proteins in two or more complex samples. Quantitative proteomics based on differential stable isotope labeling is one of the proteomics quantification technologies. Mass spectrometric data generated for peptide quantification are often noisy, and peak detection and definition require various smoothing filters to remove noise in order to achieve accurate peptide quantification. Many traditional smoothing filters, such as the moving average filter, Savitzky-Golay filter and Gaussian filter, have been used to reduce noise in MS peaks. However, limitations of these filtering approaches often result in inaccurate peptide quantification. Here we present the WaveletQuant program, based on wavelet theory, for better or alternative MS-based proteomic quantification.</p> <p>Results</p> <p>We developed a novel discrete wavelet transform (DWT) and a 'Spatial Adaptive Algorithm' to remove noise and to identify true peaks. We programmed and compiled WaveletQuant using Visual C++ 2005 Express Edition. We then incorporated the WaveletQuant program in the <b>Trans-Proteomic Pipeline (TPP)</b>, a commonly used open source proteomics analysis pipeline.</p> <p>Conclusions</p> <p>We showed that WaveletQuant was able to quantify more proteins and to quantify them more accurately than the ASAPRatio, a program that performs quantification in the TPP pipeline, first using known mixed ratios of yeast extracts and then using a data set from ovarian cancer cell lysates. The program and its documentation can be downloaded from our website at <url>http://systemsbiozju.org/data/WaveletQuant</url>.</p

    Fast computation of observed cross section for ψ′→PP\psi^{\prime} \to PP decays

    Full text link
    It has been conjectured that the relative phase between strong and electromagnetic amplitudes is universally −90∘-90^{\circ} in charmonium decays. ψ′\psi^{\prime} decaying into pseudoscalar pair provides a possibility to test this conjecture. However, the experimentally observed cross section for such a process is depicted by the two-fold integral which takes into account the initial state radiative (ISR) correction and energy spread effect. Using the generalized linear regression approach, a complex energy-dependent factor is approximated by a linear function of energy. Taking advantage of this simplification, the integration of ISR correction can be performed and an analytical expression with accuracy at the level of 1% is obtained. Then, the original two-fold integral is simplified into a one-fold integral, which reduces the total computing time by two orders of magnitude. Such a simplified expression for the observed cross section usually plays an indispensable role in the optimization of scan data taking, the determination of systematic uncertainty, and the analysis of data correlation.Comment: 8 pages, 5 figure
    • …
    corecore