Applied and Computational
Harmonic Analysis
Appl. Comput. Harmon. Anal. 23 (2007) 415-418

A new proof of some polynomial inequalities related to pseudo-splines ${ }^{\text {T }}$

Qun Mo, Yi Shen, Song Li *
Department of Mathematics, Zhejiang University, Hangzhou, 310027, PR China
Available online 6 August 2007
Communicated by Charles K. Chui on 2 July 2007

Abstract

Pseudo-splines of type I were introduced in [I. Daubechies, B. Han, A. Ron, Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14 (2003) 1-46] and [Selenick, Smooth wavelet tight frames with zero moments, Appl. Comput. Harmon. Anal. 10 (2000) 163-181] and type II were introduced in [B. Dong, Z. Shen, Pseudo-splines, wavelets and framelets, Appl. Comput. Harmon. Anal. 22 (2007) 78-104]. Both types of pseudo-splines provide a rich family of refinable functions with B-splines, interpolatory refinable functions and refinable functions with orthonormal shifts as special examples. In [B. Dong, Z. Shen, Pseudo-splines, wavelets and framelets, Appl. Comput. Harmon. Anal. 22 (2007) 78-104], Dong and Shen gave a regularity analysis of pseudo-splines of both types. The key to regularity analysis is Proposition 3.2 in [B. Dong, Z. Shen, Pseudosplines, wavelets and framelets, Appl. Comput. Harmon. Anal. 22 (2007) 78-104], which also appeared in [A. Cohen, J.P. Conze, Régularité des bases d'ondelettes et mesures ergodiques, Rev. Mat. Iberoamericana 8 (1992) 351-365] and [I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics, SIAM, Philadelphia, 1992] for the case $l=N-1$. In this note, we will give a new insight into this proposition.

© 2007 Elsevier Inc. All rights reserved.
Keywords: Refinement equations; Orthogonal wavelets; Pseudo-splines; Regularity

1. Introduction

Pseudo-splines of type I were first introduced in [3] and [8] in order to construct tight framelets with required approximation order of the truncated frame series. Pseudo-splines of type II were introduced in [4] to construct symmetric or antisymmetric tight framelets with required approximation order. Both types of pseudo-splines provide a rich family of compactly supported refinable functions which includes B-splines, orthogonal refinable functions and interpolatory refinable functions as its special cases (see [4]). A comprehensive study, especially the regularity analysis, was given in [4]. They were then extended and extensively studied in [5] and [6]. The refinement mask of a pseudo-spline of type I with order (N, l) is given by

$$
\begin{equation*}
\left|\widehat{a_{N, l}}(\omega)\right|^{2}:=\cos ^{2 N} \frac{\omega}{2} \sum_{j=0}^{l}\binom{N+l}{j} \sin ^{2 j} \frac{\omega}{2} \cos ^{2(l-j)} \frac{\omega}{2}, \quad \omega \in[-\pi, \pi] . \tag{1.1}
\end{equation*}
$$

[^0]The refinement mask of a pseudo-spline of type II with order (N, l) is given by

$$
\widehat{2 a_{N, l}}(\omega):=\cos ^{2 N} \frac{\omega}{2} \sum_{j=0}^{l}\binom{N+l}{j} \sin ^{2 j} \frac{\omega}{2} \cos ^{2(l-j)} \frac{\omega}{2}, \quad \omega \in[-\pi, \pi],
$$

where $N \geqslant 1$ and $0 \leqslant l \leqslant N-1$. We note that $\left|\widehat{a_{N, l}}(\omega)\right|^{2}=\widehat{2 a_{N, l}}(\omega)$. Hence, ${ }_{1} \widehat{a_{N, l}}(\omega)$ is a square root of $\widehat{2} \widehat{a_{N, l}}(\omega)$ and it is a 2π-periodic trigonometric polynomial with real coefficients by Fejér-Riesz lemma. The mask $\widehat{{ }_{k} a_{N, l}}(k=$ $1,2)$ completely determines the corresponding refinable function ${ }_{k} \phi(k=1$ or 2$)$ which we call pseudo-splines.

Let $P_{N, l}(x):=\sum_{j=0}^{l}\binom{N-1+j}{j} x^{j}$, by (1) of Lemma 2.2 in [4], $\sum_{j=0}^{l}\binom{N+l}{j} \sin ^{2 j} \frac{\omega}{2} \cos ^{2(l-j)} \frac{\omega}{2}=P_{n, l}\left(\sin ^{2} \frac{\omega}{2}\right)$ for all $\omega \in[-\pi, \pi]$. Therefore, when $l=N-1$, pseudo-splines of type I are refinable functions with orthonormal shifts given in [2] and pseudo-splines of type II are the interpolatory refinable functions which were first studied by Dubuc in [7]. The pseudo-splines with order $(N, 0)$ are B-splines. The other pseudo-splines fill in the gap between the B-spline and orthogonal or interpolator refinable functions. In [4], Dong and Shen gave a regularity analysis of pseudosplines of both types. The key to regularity analysis is Proposition 3.2 in [4]. This proposition is important and difficult to prove. In [1] and [2], it takes several technics including numeric computation to prove it for the case $l=N-1$. In [4], by using many steps to prove that a polynomial is decreasing, Dong and Shen gave a complete proof of this proposition. In this note, by using an auxiliary polynomial and some concave properties, we will give a new insight into Proposition 3.2 in [4].

2. Four lemmas

In this section, we establish four technical lemmas which will be used to prove our main result.
Lemma 2.1. For given nonnegative integers N and l, let $P_{N, l}(x):=\sum_{j=0}^{l}\binom{N-1+j}{j} x^{j}$. Then

$$
\begin{align*}
P_{N, l}^{\prime}(x) & =\frac{N}{1-x}\left[P_{N, l}(x)-\binom{N+l}{l} x^{l}\right] \tag{2.1}\\
P_{N, l}^{\prime \prime}(x) & =\frac{N}{(1-x)^{2}}\left[(N+1) P_{N, l}(x)-\binom{N+l}{l}\left(N+1+\frac{l(1-x)}{x}\right) x^{l}\right] . \tag{2.2}
\end{align*}
$$

Proof. Borrowing an idea from [1] and [4], to prove (2.1), by the definition of $P_{N, l}(x)$,

$$
\begin{aligned}
\frac{1-x}{N} P_{N, l}^{\prime}(x) & =\frac{1-x}{N} \sum_{j=1}^{l}\binom{N-1+j}{j} j x^{j-1}=(1-x) \sum_{j=0}^{l-1}\binom{N+j}{j} x^{j} \\
& =1+\sum_{j=1}^{l}\left[\binom{N+j}{j}-\binom{N+j-1}{j-1}\right] x^{j}-\binom{N+l}{l} x^{l}=P_{N, l}(x)-\binom{N+l}{l} x^{l} .
\end{aligned}
$$

Therefore (2.1) holds. To prove (2.2), taking the derivative of (2.1),

$$
\begin{aligned}
P_{N, L}^{\prime \prime}(x) & =\frac{N}{(1-x)^{2}}\left[P_{N, l}(x)-\binom{N+l}{l} x^{l}\right]+\frac{N}{1-x}\left[P_{N, l}^{\prime}(x)-\binom{N+l}{l} l x^{l-1}\right] \\
& =\frac{N}{(1-x)^{2}}\left[P_{N, l}(x)-\binom{N+l}{l} x^{l}\right]+\frac{N^{2}}{(1-x)^{2}}\left[P_{N, l}(x)-\binom{N+l}{l} x^{l}\right]-\frac{N}{(1-x)}\binom{N+l}{l} l x^{l-1} \\
& =\frac{N}{(1-x)^{2}}\left[(N+1) P_{N, l}(x)-\binom{N+l}{l}\left(N+1+\frac{l(1-x)}{x}\right) x^{l}\right] .
\end{aligned}
$$

Lemma 2.2. For given integers N and l, if $0<l \leqslant N-1$,

$$
\begin{equation*}
2 \cdot \frac{N+2 \sqrt{l}-l}{(N+\sqrt{l}-l)^{2}+N}+\frac{1}{l} \leqslant \frac{N+2 \sqrt{l+1}-l-1}{(N+\sqrt{l+1}-l-1)^{2}+N} \frac{N+l}{l} . \tag{2.3}
\end{equation*}
$$

Proof. By multiplying the common denominator of (2.3), it suffices to show that

$$
\begin{align*}
& {\left[2 l(N+2 \sqrt{l}-l)+(N+\sqrt{l}-l)^{2}+N\right]\left[(N+\sqrt{l+1}-l-1)^{2}+N\right]} \\
& \quad \leqslant[N+2 \sqrt{l+1}-l-1](N+l)\left[(N+\sqrt{l}-l)^{2}+N\right] . \tag{2.4}
\end{align*}
$$

Note that the first factor can be divided by $N+l$. That is,

$$
2 l(N+2 \sqrt{l}-l)+(N+\sqrt{l}-l)^{2}+N=(N+l)(N+2 \sqrt{l}-l+1) .
$$

After this factorization, by direct computation and simplification, inequality (2.4) is equivalent to

$$
(N+l)(1+\sqrt{l}-\sqrt{l+1})[(\sqrt{l(l+1)}-N)(\sqrt{l+1}-1+\sqrt{l})+(\sqrt{l+1}-1-\sqrt{l}) \sqrt{l+1}] \leqslant 0 .
$$

By the fact $1 \leqslant l+1 \leqslant N$ and direct computation, the last inequality holds.
Lemma 2.3. For given nonnegative integers N and l, let $P_{N, l}(x):=\sum_{j=0}^{l}\binom{N-1+j}{j} x^{j}$ and $g(x):=P_{N, l}(x)(l+1-$ $\sqrt{l+1})^{2}+x^{2} P_{N, l}^{\prime \prime}(x)-2 x P_{N, l}^{\prime}(x)(l+1-\sqrt{l+1})$. Then $g(1 / 2) \leqslant 0$ for $l \leqslant N-1$.

Proof. By the definition of g and Eqs. (2.1) and (2.2),

$$
\begin{aligned}
g\left(\frac{1}{2}\right)= & P_{N, l}\left(\frac{1}{2}\right)(l+1-\sqrt{l+1})^{2}+\left(N^{2}+N\right) P_{N, l}\left(\frac{1}{2}\right)-\left(\frac{1}{2}\right)^{l}\binom{N+l}{l}\left(N+N^{2}+N l\right) \\
& -2 N(l+1-\sqrt{l+1})\left[P_{N, l}\left(\frac{1}{2}\right)-\binom{N+l}{l}\left(\frac{1}{2}\right)^{l}\right] \\
= & P_{N, l}\left(\frac{1}{2}\right)\left[(l+1-\sqrt{l+1}-N)^{2}+N\right]-\left(\frac{1}{2}\right)^{l}\binom{N+l}{l} N(N+2 \sqrt{l+1}-l-1) .
\end{aligned}
$$

Then $g\left(\frac{1}{2}\right) \leqslant 0$ follows from

$$
\begin{equation*}
2^{l} P_{N, l}\left(\frac{1}{2}\right) \leqslant N \cdot \frac{N+2 \sqrt{l+1}-l-1}{(N+\sqrt{l+1}-l-1)^{2}+N}\binom{N+l}{l} . \tag{2.5}
\end{equation*}
$$

We now prove (2.5) by induction. Equation (2.5) is obviously true for $l=0$. Suppose (2.5) holds for l_{0}. Now consider $l=l_{0}+1 \leqslant N-1$,

$$
\begin{align*}
2^{l_{0}+1} P_{N, l_{0}+1}\left(\frac{1}{2}\right) & =2 \cdot 2^{l_{0}} P_{N, l_{0}}\left(\frac{1}{2}\right)+\binom{N+l_{0}}{l_{0}+1} \\
& \leqslant\left[2 N \cdot \frac{N+2 \sqrt{l_{0}+1}-l_{0}-1}{\left(N+\sqrt{l_{0}+1}-l_{0}-1\right)^{2}+N}+\frac{N}{l_{0}+1}\right]\binom{N+l_{0}}{l_{0}} \quad \text { (by inductive hypothesis) } \\
& \leqslant N \cdot\left[\frac{N+2 \sqrt{l_{0}+2}-l_{0}-2}{\left(N+\sqrt{l_{0}+2}-l_{0}-2\right)^{2}+N} \frac{N+l_{0}+1}{l_{0}+1}\right]\binom{N+l_{0}}{l_{0}} \quad(\text { by (2.3)) } \tag{2.3}\\
& =N \cdot \frac{N+2 \sqrt{l_{0}+2}-l_{0}-2}{\left(N+\sqrt{l_{0}+2}-l_{0}-2\right)^{2}+N}\binom{N+l_{0}+1}{l_{0}+1} .
\end{align*}
$$

That is, (2.5) holds for $l=l_{0}+1$.
Lemma 2.4. Suppose $p(x)=\sum_{j=0}^{l} c_{j} x^{j}$ is a polynomial with nonnegative coefficients $c_{j}, j=0,1, \ldots, l$. Let $g(x):=$ $p(x)(l+1-\sqrt{l+1})^{2}+x^{2} p^{\prime \prime}(x)-2 x p^{\prime}(x)(l+1-\sqrt{l+1})$. If $g\left(x_{0}\right) \leqslant 0$ for some positive number x_{0}, then

$$
\begin{equation*}
p(x) p(y) \leqslant p^{2}\left(\frac{x+y}{2}\right) \quad \forall x, y \in\left[x_{0},+\infty\right) \tag{2.6}
\end{equation*}
$$

Proof. If $p(x) \equiv 0$ or $l=0$, then obviously (2.6) holds. Hence we assume that $p(x)>0$ in $(0,+\infty)$ and $l>0$. By the definition of $p(x)$ and $g(x), g(x)=\sum_{j=0}^{l} c_{j} d(j) x^{j}$, where $d(t):=(l+1-\sqrt{l+1})^{2}+t(t-1)-2 t(l+1-\sqrt{l+1})$.

It is easy to check that $d(t)=(l+1-\sqrt{l+1}-t)^{2}-t$, so $d(l+1)=0=d(l+1-2 \sqrt{l+1}+1)$. Hence there exists an integer $L \in[0, l]$, such that $d(j) \geqslant 0$ for $j=0, \ldots, L$ and $d(j) \leqslant 0$ for $j=L+1, \ldots, l$. Thus, each term $c_{j} d(j) x^{j-L}, j=0, \ldots, l$ either has a nonpositive power $j-L$ or a nonpositive coefficient $c_{j} d(j)$. Therefore, $g(x) x^{-L}$ is decreasing in $(0,+\infty)$. If $g\left(x_{0}\right) \leqslant 0$ for some $x_{0}>0$, then $g\left(x_{0}\right) x_{0}^{-L} \leqslant 0$ and therefore $g(x) x^{-L} \leqslant 0$ for all $x \geqslant x_{0}$. Hence $g(x) \leqslant 0$ for all $x \geqslant x_{0}$. That is,

$$
\begin{equation*}
p(x)(l+1-\sqrt{l+1})^{2}+x^{2} p^{\prime \prime}(x) \leqslant 2 x p^{\prime}(x)(l+1-\sqrt{l+1}) \quad \forall x \in\left[x_{0},+\infty\right) \tag{2.7}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left[p(x)(l+1-\sqrt{l+1})^{2}\right]\left[x^{2} p^{\prime \prime}(x)\right] \leqslant\left[x p^{\prime}(x)(l+1-\sqrt{l+1})\right]^{2} \quad \forall x \in\left[x_{0},+\infty\right) \tag{2.8}
\end{equation*}
$$

The above inequality is same as $p(x) p^{\prime \prime}(x) \leqslant\left[p^{\prime}(x)\right]^{2}$ for all $x \in\left[x_{0},+\infty\right)$. Therefore, function $\ln p(x)$ is concave downward in $\left[x_{0},+\infty\right)$. Hence $\ln p(x)+\ln p(y) \leqslant 2 \ln p\left(\frac{x+y}{2}\right)$ for all $x, y \in\left[x_{0}, \infty\right)$, which implies (2.6).

Remark. In the above proof, we have proved (2.7) instead of (2.8). The reason for (2.8) to follow from (2.7) is that $a+b \leqslant 2 c$ implies $a b \leqslant c^{2}$. Here, the quantities for a and b are very close to each other by choosing the factors $(l+1-\sqrt{l+1})^{2}$ and x^{2}.

3. Main result

This section establishes the main result of this note.
Theorem 3.1. For given integers N and l with $0 \leqslant l \leqslant N-1$, let $P_{N, l}(x):=\sum_{j=0}^{l}\binom{N-1+j}{j} x^{j}$. Then

$$
\begin{align*}
& P_{N, l}(x) \leqslant P_{N, l}\left(\frac{3}{4}\right) \quad \forall x \in\left[0, \frac{3}{4}\right], \tag{3.1}\\
& P_{N, l}(x) P_{N, l}[4 x(1-x)] \leqslant\left[P_{N, l}\left(\frac{3}{4}\right)\right]^{2} \quad \forall x \in\left[\frac{3}{4}, 1\right] . \tag{3.2}
\end{align*}
$$

Proof. Since $P_{N, l}(x)$ is increasing in $[0, \infty)$, (3.1) holds. We now prove (3.2). It is easy to check that $4 x(1-x) \leqslant$ $\frac{3}{2}-x$ for all $x \in\left[\frac{3}{4}, 1\right]$. Hence it suffices to prove that

$$
\begin{equation*}
P_{N, l}(x) P_{N, l}\left(\frac{3}{2}-x\right) \leqslant\left[P_{N, l}\left(\frac{3}{4}\right)\right]^{2} \quad \forall x \in\left[\frac{3}{4}, 1\right] . \tag{3.3}
\end{equation*}
$$

On the other hand, by Lemmas 2.3 and 2.4,

$$
P_{N, l}(x) P_{N, l}(y) \leqslant\left[P_{N, l}\left(\frac{x+y}{2}\right)\right]^{2} \quad \forall x, y \in\left[\frac{1}{2}, 1\right],
$$

which implies (3.3). Hence (3.2) holds.
Remark. By Theorem 3.1 in [4], our main result leads to an optimal decay estimate on the Fourier transform of pseudo-splines.

References

[1] A. Cohen, J.P. Conze, Régularité des bases d'ondelettes et mesures ergodiques, Rev. Mat. Iberoamericana 8 (1992) $351-365$.
[2] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics, SIAM, Philadelphia, 1992.
[3] I. Daubechies, B. Han, A. Ron, Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14 (2003) 1-46.
[4] B. Dong, Z. Shen, Pseudo-splines, wavelets and framelets, Appl. Comput. Harmon. Anal. 22 (2007) 78-104.
[5] B. Dong, Z. Shen, Linear independence of pseudo-splines, Proc. Amer. Math. Soc. 134 (2006) 2685-2694.
[6] B. Dong, Z. Shen, Construction of biorthogonal wavelets from pseudo-splines, J. Approx. Theory 138 (2006) 211-231.
[7] S. Dubuc, Interpolation through an iterative scheme, J. Math. Anal. Appl. 114 (1986) 185-204.
[8] X. Selenick, Smooth wavelet tight frames with zeor moments, Appl. Comput. Harmon. Anal. 10 (2000) 163-181.

[^0]: \# This work is supported by NSF of China under Grant number 10471123.

 * Corresponding author.

 E-mail addresses: moqun@zju.edu.cn (Q. Mo), songli@zju.edu.cn (S. Li).

