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Abstract

Pseudo-splines of type I were introduced in [I. Daubechies, B. Han, A. Ron, Z. Shen, Framelets: MRA-based constructions of
wavelet frames, Appl. Comput. Harmon. Anal. 14 (2003) 1–46] and [Selenick, Smooth wavelet tight frames with zero moments,
Appl. Comput. Harmon. Anal. 10 (2000) 163–181] and type II were introduced in [B. Dong, Z. Shen, Pseudo-splines, wavelets
and framelets, Appl. Comput. Harmon. Anal. 22 (2007) 78–104]. Both types of pseudo-splines provide a rich family of refinable
functions with B-splines, interpolatory refinable functions and refinable functions with orthonormal shifts as special examples. In
[B. Dong, Z. Shen, Pseudo-splines, wavelets and framelets, Appl. Comput. Harmon. Anal. 22 (2007) 78–104], Dong and Shen gave
a regularity analysis of pseudo-splines of both types. The key to regularity analysis is Proposition 3.2 in [B. Dong, Z. Shen, Pseudo-
splines, wavelets and framelets, Appl. Comput. Harmon. Anal. 22 (2007) 78–104], which also appeared in [A. Cohen, J.P. Conze,
Régularité des bases d’ondelettes et mesures ergodiques, Rev. Mat. Iberoamericana 8 (1992) 351–365] and [I. Daubechies, Ten
Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics, SIAM, Philadelphia, 1992] for the case l = N − 1. In this note,
we will give a new insight into this proposition.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Pseudo-splines of type I were first introduced in [3] and [8] in order to construct tight framelets with required
approximation order of the truncated frame series. Pseudo-splines of type II were introduced in [4] to construct
symmetric or antisymmetric tight framelets with required approximation order. Both types of pseudo-splines provide
a rich family of compactly supported refinable functions which includes B-splines, orthogonal refinable functions
and interpolatory refinable functions as its special cases (see [4]). A comprehensive study, especially the regularity
analysis, was given in [4]. They were then extended and extensively studied in [5] and [6]. The refinement mask of a
pseudo-spline of type I with order (N, l) is given by∣∣

̂1aN,l(ω)
∣∣2 := cos2N ω

2

l∑
j=0

(
N + l

j

)
sin2j ω

2
cos2(l−j) ω

2
, ω ∈ [−π,π]. (1.1)
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The refinement mask of a pseudo-spline of type II with order (N, l) is given by

̂2aN,l(ω) := cos2N ω

2

l∑
j=0

(
N + l

j

)
sin2j ω

2
cos2(l−j) ω

2
, ω ∈ [−π,π],

where N � 1 and 0 � l � N − 1. We note that |̂1aN,l(ω)|2 = ̂2aN,l(ω). Hence, 1âN,l(ω) is a square root of 2âN,l(ω)

and it is a 2π -periodic trigonometric polynomial with real coefficients by Fejér–Riesz lemma. The mask ̂kaN,l (k =
1,2) completely determines the corresponding refinable function kφ (k = 1 or 2) which we call pseudo-splines.

Let PN,l(x) := ∑l
j=0

(
N−1+j

j

)
xj , by (1) of Lemma 2.2 in [4],

∑l
j=0

(
N+l

j

)
sin2j ω

2 cos2(l−j) ω
2 = Pn,l(sin2 ω

2 ) for
all ω ∈ [−π,π]. Therefore, when l = N − 1, pseudo-splines of type I are refinable functions with orthonormal shifts
given in [2] and pseudo-splines of type II are the interpolatory refinable functions which were first studied by Dubuc
in [7]. The pseudo-splines with order (N,0) are B-splines. The other pseudo-splines fill in the gap between the
B-spline and orthogonal or interpolator refinable functions. In [4], Dong and Shen gave a regularity analysis of pseudo-
splines of both types. The key to regularity analysis is Proposition 3.2 in [4]. This proposition is important and difficult
to prove. In [1] and [2], it takes several technics including numeric computation to prove it for the case l = N − 1.
In [4], by using many steps to prove that a polynomial is decreasing, Dong and Shen gave a complete proof of this
proposition. In this note, by using an auxiliary polynomial and some concave properties, we will give a new insight
into Proposition 3.2 in [4].

2. Four lemmas

In this section, we establish four technical lemmas which will be used to prove our main result.

Lemma 2.1. For given nonnegative integers N and l, let PN,l(x) := ∑l
j=0

(
N−1+j

j

)
xj . Then

P ′
N,l(x) = N

1 − x

[
PN,l(x) −

(
N + l

l

)
xl

]
, (2.1)

P ′′
N,l(x) = N

(1 − x)2

[
(N + 1)PN,l(x) −

(
N + l

l

)(
N + 1 + l(1 − x)

x

)
xl

]
. (2.2)

Proof. Borrowing an idea from [1] and [4], to prove (2.1), by the definition of PN,l(x),

1 − x

N
P ′

N,l(x) = 1 − x

N

l∑
j=1

(
N − 1 + j

j

)
j xj−1 = (1 − x)

l−1∑
j=0

(
N + j

j

)
xj

= 1 +
l∑

j=1

[(
N + j

j

)
−

(
N + j − 1

j − 1

)]
xj −

(
N + l

l

)
xl = PN,l(x) −

(
N + l

l

)
xl.

Therefore (2.1) holds. To prove (2.2), taking the derivative of (2.1),

P ′′
N,L(x) = N

(1 − x)2

[
PN,l(x) −

(
N + l

l

)
xl

]
+ N

1 − x

[
P ′

N,l(x) −
(

N + l

l

)
lxl−1

]

= N

(1 − x)2

[
PN,l(x) −

(
N + l

l

)
xl

]
+ N2

(1 − x)2

[
PN,l(x) −

(
N + l

l

)
xl

]
− N

(1 − x)

(
N + l

l

)
lxl−1

= N

(1 − x)2

[
(N + 1)PN,l(x) −

(
N + l

l

)(
N + 1 + l(1 − x)

x

)
xl

]
. �

Lemma 2.2. For given integers N and l, if 0 < l � N − 1,

2 · N + 2
√

l − l

(N + √
l − l)2 + N

+ 1

l
� N + 2

√
l + 1 − l − 1

(N + √
l + 1 − l − 1)2 + N

N + l

l
. (2.3)
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Proof. By multiplying the common denominator of (2.3), it suffices to show that[
2l(N + 2

√
l − l) + (N + √

l − l)2 + N
][

(N + √
l + 1 − l − 1)2 + N

]
� [N + 2

√
l + 1 − l − 1](N + l)

[
(N + √

l − l)2 + N
]
. (2.4)

Note that the first factor can be divided by N + l. That is,

2l(N + 2
√

l − l) + (N + √
l − l)2 + N = (N + l)(N + 2

√
l − l + 1).

After this factorization, by direct computation and simplification, inequality (2.4) is equivalent to

(N + l)(1 + √
l − √

l + 1 )
[(√

l(l + 1) − N
)
(
√

l + 1 − 1 + √
l) + (

√
l + 1 − 1 − √

l)
√

l + 1
]
� 0.

By the fact 1 � l + 1 � N and direct computation, the last inequality holds. �
Lemma 2.3. For given nonnegative integers N and l, let PN,l(x) := ∑l

j=0

(
N−1+j

j

)
xj and g(x) := PN,l(x)(l + 1 −√

l + 1)2 + x2P ′′
N,l(x) − 2xP ′

N,l(x)(l + 1 − √
l + 1). Then g(1/2) � 0 for l � N − 1.

Proof. By the definition of g and Eqs. (2.1) and (2.2),

g

(
1

2

)
= PN,l

(
1

2

)
(l + 1 − √

l + 1 )2 + (
N2 + N

)
PN,l

(
1

2

)
−

(
1

2

)l(
N + l

l

)(
N + N2 + Nl

)
− 2N(l + 1 − √

l + 1 )

[
PN,l

(
1

2

)
−

(
N + l

l

)(
1

2

)l]

= PN,l

(
1

2

)[
(l + 1 − √

l + 1 − N)2 + N
] −

(
1

2

)l(
N + l

l

)
N(N + 2

√
l + 1 − l − 1).

Then g( 1
2 ) � 0 follows from

2lPN,l

(
1

2

)
� N · N + 2

√
l + 1 − l − 1

(N + √
l + 1 − l − 1)2 + N

(
N + l

l

)
. (2.5)

We now prove (2.5) by induction. Equation (2.5) is obviously true for l = 0. Suppose (2.5) holds for l0. Now consider
l = l0 + 1 � N − 1,

2l0+1PN,l0+1

(
1

2

)
= 2 · 2l0PN,l0

(
1

2

)
+

(
N + l0

l0 + 1

)

�
[

2N · N + 2
√

l0 + 1 − l0 − 1

(N + √
l0 + 1 − l0 − 1)2 + N

+ N

l0 + 1

](
N + l0

l0

)
(by inductive hypothesis)

� N ·
[

N + 2
√

l0 + 2 − l0 − 2

(N + √
l0 + 2 − l0 − 2)2 + N

N + l0 + 1

l0 + 1

](
N + l0

l0

)
(by (2.3))

= N · N + 2
√

l0 + 2 − l0 − 2

(N + √
l0 + 2 − l0 − 2)2 + N

(
N + l0 + 1

l0 + 1

)
.

That is, (2.5) holds for l = l0 + 1. �
Lemma 2.4. Suppose p(x) = ∑l

j=0 cj x
j is a polynomial with nonnegative coefficients cj , j = 0,1, . . . , l. Let g(x) :=

p(x)(l + 1 − √
l + 1)2 + x2p′′(x) − 2xp′(x)(l + 1 − √

l + 1). If g(x0) � 0 for some positive number x0, then

p(x)p(y) � p2
(

x + y

2

)
∀x, y ∈ [x0,+∞). (2.6)

Proof. If p(x) ≡ 0 or l = 0, then obviously (2.6) holds. Hence we assume that p(x) > 0 in (0,+∞) and l > 0. By the
definition of p(x) and g(x), g(x) = ∑l

cj d(j)xj , where d(t) := (l +1−√
l + 1)2 + t (t −1)−2t (l +1−√

l + 1).
j=0
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It is easy to check that d(t) = (l + 1 − √
l + 1 − t)2 − t , so d(l + 1) = 0 = d(l + 1 − 2

√
l + 1 + 1). Hence there

exists an integer L ∈ [0, l], such that d(j) � 0 for j = 0, . . . ,L and d(j) � 0 for j = L + 1, . . . , l. Thus, each
term cjd(j)xj−L, j = 0, . . . , l either has a nonpositive power j − L or a nonpositive coefficient cjd(j). Therefore,
g(x)x−L is decreasing in (0,+∞). If g(x0) � 0 for some x0 > 0, then g(x0)x

−L
0 � 0 and therefore g(x)x−L � 0 for

all x � x0. Hence g(x) � 0 for all x � x0. That is,

p(x)(l + 1 − √
l + 1)2 + x2p′′(x) � 2xp′(x)(l + 1 − √

l + 1) ∀x ∈ [x0,+∞). (2.7)

Hence[
p(x)(l + 1 − √

l + 1)2][x2p′′(x)
]
�

[
xp′(x)(l + 1 − √

l + 1)
]2 ∀x ∈ [x0,+∞). (2.8)

The above inequality is same as p(x)p′′(x) � [p′(x)]2 for all x ∈ [x0,+∞). Therefore, function lnp(x) is concave
downward in [x0,+∞). Hence lnp(x) + lnp(y) � 2 lnp

( x+y
2

)
for all x, y ∈ [x0,∞), which implies (2.6). �

Remark. In the above proof, we have proved (2.7) instead of (2.8). The reason for (2.8) to follow from (2.7) is that
a + b � 2c implies ab � c2. Here, the quantities for a and b are very close to each other by choosing the factors
(l + 1 − √

l + 1)2 and x2.

3. Main result

This section establishes the main result of this note.

Theorem 3.1. For given integers N and l with 0 � l � N − 1, let PN,l(x) := ∑l
j=0

(
N−1+j

j

)
xj . Then

PN,l(x) � PN,l

(
3

4

)
∀x ∈

[
0,

3

4

]
, (3.1)

PN,l(x)PN,l

[
4x(1 − x)

]
�

[
PN,l

(
3

4

)]2

∀x ∈
[

3

4
,1

]
. (3.2)

Proof. Since PN,l(x) is increasing in [0,∞), (3.1) holds. We now prove (3.2). It is easy to check that 4x(1 − x) �
3
2 − x for all x ∈ [ 3

4 ,1]. Hence it suffices to prove that

PN,l(x)PN,l

(
3

2
− x

)
�

[
PN,l

(
3

4

)]2

∀x ∈
[

3

4
,1

]
. (3.3)

On the other hand, by Lemmas 2.3 and 2.4,

PN,l(x)PN,l(y) �
[
PN,l

(
x + y

2

)]2

∀x, y ∈
[

1

2
,1

]
,

which implies (3.3). Hence (3.2) holds. �
Remark. By Theorem 3.1 in [4], our main result leads to an optimal decay estimate on the Fourier transform of
pseudo-splines.
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