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Abstract

Pseudo-splines of type I were introduced in [I. Daubechies, B. Han, A. Ron, Z. Shen, Framelets: MRA-based constructions of
wavelet frames, Appl. Comput. Harmon. Anal. 14 (2003) 1-46] and [Selenick, Smooth wavelet tight frames with zero moments,
Appl. Comput. Harmon. Anal. 10 (2000) 163-181] and type II were introduced in [B. Dong, Z. Shen, Pseudo-splines, wavelets
and framelets, Appl. Comput. Harmon. Anal. 22 (2007) 78-104]. Both types of pseudo-splines provide a rich family of refinable
functions with B-splines, interpolatory refinable functions and refinable functions with orthonormal shifts as special examples. In
[B. Dong, Z. Shen, Pseudo-splines, wavelets and framelets, Appl. Comput. Harmon. Anal. 22 (2007) 78-104], Dong and Shen gave
aregularity analysis of pseudo-splines of both types. The key to regularity analysis is Proposition 3.2 in [B. Dong, Z. Shen, Pseudo-
splines, wavelets and framelets, Appl. Comput. Harmon. Anal. 22 (2007) 78-104], which also appeared in [A. Cohen, J.P. Conze,
Régularité des bases d’ondelettes et mesures ergodiques, Rev. Mat. Iberoamericana 8 (1992) 351-365] and [I. Daubechies, Ten
Lectures on Wavelets, CBMS-NSF Series in Applied Mathematics, SIAM, Philadelphia, 1992] for the case [ = N — 1. In this note,
we will give a new insight into this proposition.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Pseudo-splines of type I were first introduced in [3] and [8] in order to construct tight framelets with required
approximation order of the truncated frame series. Pseudo-splines of type II were introduced in [4] to construct
symmetric or antisymmetric tight framelets with required approximation order. Both types of pseudo-splines provide
a rich family of compactly supported refinable functions which includes B-splines, orthogonal refinable functions
and interpolatory refinable functions as its special cases (see [4]). A comprehensive study, especially the regularity
analysis, was given in [4]. They were then extended and extensively studied in [5] and [6]. The refinement mask of a
pseudo-spline of type I with order (N, ) is given by

!
_ N+ . B
|1aN,1(w)|2 .= cos?N % jE_O( ; ) sin%/ %cosz(l 9 % w € [-m, ). (1.1)
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The refinement mask of a pseudo-spline of type II with order (N, [) is given by

— v @ (N4 L 2j @ o1—j) @
2an 1 (w) :=cos EZ . sin ECOS > w€[—m, ],

j=o~

where N > 1 and 0 </ < N — 1. We note that |ﬁ1V\J(w)|2 =jay (w). Hence, 1ay () is a square root of 2y ;(w)
and it is a 27 -periodic trigonometric polynomial with real coefficients by Fejér-Riesz lemma. The mask zay,; (k =
1, 2) completely determines the corresponding refinable function r¢ (k = 1 or 2) which we call pseudo-splines.

Let Py 1(x) := Y5 _o (V7 ]*/)x7, by (1) of Lemma 2.2 in [4], 3 _ (V) sin® § cos>! =) = P, ;(sin §) for
all w € [—m, ]. Therefore, when [ = N — 1, pseudo-splines of type I are refinable functions with orthonormal shifts
given in [2] and pseudo-splines of type II are the interpolatory refinable functions which were first studied by Dubuc
in [7]. The pseudo-splines with order (N, 0) are B-splines. The other pseudo-splines fill in the gap between the
B-spline and orthogonal or interpolator refinable functions. In [4], Dong and Shen gave a regularity analysis of pseudo-
splines of both types. The key to regularity analysis is Proposition 3.2 in [4]. This proposition is important and difficult
to prove. In [1] and [2], it takes several technics including numeric computation to prove it for the case [ = N — 1.
In [4], by using many steps to prove that a polynomial is decreasing, Dong and Shen gave a complete proof of this
proposition. In this note, by using an auxiliary polynomial and some concave properties, we will give a new insight
into Proposition 3.2 in [4].

2. Four lemmas
In this section, we establish four technical lemmas which will be used to prove our main result.

Lemma 2.1. For given nonnegative integers N and [, let Py j(x) := le=0 (N 7].1“ )xj . Then

/ N N +1

Py (x) = E[PN,I(X) - ( ; >xl}, 2.1
y N N +1 I(1—x)

Pl (x) = m[(;\ur 1)PN,,(x)—< 1 ><N+ L+ — a )xl:|. 2.2)

Proof. Borrowing an idea from [1] and [4], to prove (2.1), by the definition of Py ;(x),

l -1
1—x 1—x N—-14+j\. ._ N+j\ ;
TP = (N ) st —a - s (Y )
=~ 7

=t
I . .
N N -1 . N +1 N +1
= () (L) () = (M)
i j j—1 l l
Therefore (2.1) holds. To prove (2.2), taking the derivative of (2.1),

N i N +1 N N +1
P]/\;,L(x) = A—x? Py (x) — ( l+ )xl] + m[f’;\;,l(x) - ( l+ )lxl_l}
N

B i (NI N? (NI N (NFD
= -7 P ( I >X]+<1—x>2[PN”(X) < )x} (1—x>< I )lx

I
=i ivx)z (N +1)Py(x) — (N;Ll) <N+ 1+ m;”);ﬂ].

Lemma 2.2. For given integers N and l, if 0 <l < N — 1,

N+2J1—-1 1 N+2JI+1—-1—-1 N+I
: +-< . (2.3)
(N+VI=D24+N |  (N+JST+1—-1—-1)24+N
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Proof. By multiplying the common denominator of (2.3), it suffices to show that
[20(N +2VT =)+ (N + VI =D* + N][(N + VI+ 11— 1)+ N]
<IN +2VI+ 11— 1N +D[(N +~1—-1D*+N]. (2.4)
Note that the first factor can be divided by N + [. That is,
AN +2VI =D+ (N+VI=D*+N=(N+D(N +2vI -1+ 1).
After this factorization, by direct computation and simplification, inequality (2.4) is equivalent to
(N+DU+VI=VI+ D[(VIC+ D) = N)VT+1T=1+VD)+ VT +1-1-VDVT+1]<0

By the fact 1 </ + 1 < N and direct computation, the last inequality holds. O

Lemma 2.3. For given nonnegative integers N and I, let Py ;(x) 1= Zézo (N ]H']) T and g(x) := Py (x)(I +1—
1+ 1)2 +x2P1’\§J(x) — 2xP1’\]’l(x)(l +1—1+1). Then g(1/2) <O0forl <N — 1.

Proof. By the definition of g and Egs. (2.1) and (2.2),
1 1 1\ (N +1
g<2> PNz< >(1+1—«/ +1)*+ (N2+N)PN,I<E>_<§) ( ; )(N+N2+Nl)

—2N(l+1—\/l+—1)|:PN’l(%) B (NZH><%>I]

l
—PN1< >[(l+1—«/l+ N)2+N]—<%> <NI+I>N(N+2«/I+1—Z—1).

Then g(%) < 0 follows from

zlPN,(l><N- N+2JI+1—-1-1 (N—i—l)'
"\ 2 (N+/I+1=1-1)>+N\ [

We now prove (2.5) by induction. Equation (2.5) is obviously true for / = 0. Suppose (2.5) holds for /y. Now consider
I=lh+1<N-1,

1 1 N+
2hotlp ~|=2.2bp
N,lp+1 > NIy + lo+ 1

[ N+2«/lo+l—lo—l N :|(N+lo
< |2N -
N+l +1—=lg—1D2+N  Ilh+1 lo
[ N+2Jlp+2—1p—2 N+l0+lj|(N+l()
<N-
(N+Vlg+2—1p—2)2+N Ip+1 lo
N N+2J/lh+2—-1p—2 <N+lo+1)
(N+Vlo+2—1p—22+N\ lh+1 )
That is, (2.5) holds forl =1lp+ 1. O

2.5)

) (by inductive hypothesis)

> (by (2.3))

Lemma 2.4. Suppose p(x) = Zj -0 c]xf is a polynomial with nonnegative coefficients cj, j =0,1,...,1. Let g(x) :=
p)U+1—VT+ D24+ x%2p"(x) = 2xp’ (X)L + 1 — T+ 1). If g(x0) < O for some positive number xq, then
X+
pP@)p(y) < p2<Ty) Vx, y € [xo, +00). (2.6)

Proof. If p(x) =0 or/ =0, then obviously (2.6) holds. Hence we assume that p(x) > 0 in (0, +00) and [ > 0. By the
definition of p(x) and g(x), g(x) = le:() cjd(j)x!,whered(t) :=(+1—-+I+ D24+t —1)—2t(+1—T+1).
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It is easy to check that d(t) = (( + 1 — /I + 1 — D2 —r,s0dl+1)=0=d(l+1—2J/T+1+ 1). Hence there
exists an integer L € [0,!], such that d(j) > 0 for j =0,...,L and d(j) <O for j =L + 1,...,l. Thus, each
term c;d(j )xj -L Jj =0,...,1 either has a nonpositive power j — L or a nonpositive coefficient ¢;d(j). Therefore,
g(x)x~ L is decreasing in (0, +-00). If g(xo) < 0 for some xo > 0, then g(xo)ng < 0 and therefore g(x)x % <0 for
all x > xo. Hence g(x) < 0 for all x > x¢. That is,

U+ 1=VI+ D2 +x2p"(x) <2xp' () + 1 =TI+ 1) Vx € [xg, +00). 2.7)
Hence
[P+ 1= VI+ D?][x*p" )] < [xp’ () +1 =V + 1)]2 Vx € [xg, +00). (2.8)

The above inequality is same as p(x)p”(x) < [p’ (x)]? for all x € [xg, +00). Therefore, function In p(x) is concave
downward in [xg, 400). Hence In p(x) +In p(y) < 21np(#) for all x, y € [xg, 00), which implies (2.6). O

Remark. In the above proof, we have proved (2.7) instead of (2.8). The reason for (2.8) to follow from (2.7) is that
a + b < 2c implies ab < 2. Here, the quantities for @ and b are very close to each other by choosing the factors

(I +1—=1+1)% and x>,
3. Main result

This section establishes the main result of this note.

Theorem 3.1. For given integers N and | with 0 <I < N — 1, let Py j(x) := lezo (N7}+j)xj. Then
3 3

3\1? 3
Py 1(x) Py g[4x(1 — x)] < [PNJ(Z)} Vx € [Z’ 1]. (3.2)

Proof. Since Py ;(x) is increasing in [0, 00), (3.1) holds. We now prove (3.2). It is easy to check that 4x(1 — x) <
% —x forall x € [%, 1]. Hence it suffices to prove that

3 3\ 1% 3
PN,I(X)PN,Z<E —x) < |:PN,I<Z>:| Vx € [Z’ 1] (3.3)

On the other hand, by Lemmas 2.3 and 2.4,

x+y 2 1
Pni(x)Pni(y) < | Py — Vx,y € 5,1 ,

which implies (3.3). Hence (3.2) holds. O

Remark. By Theorem 3.1 in [4], our main result leads to an optimal decay estimate on the Fourier transform of
pseudo-splines.
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