18 research outputs found

    Double cross-linked graphene oxide hydrogel for promoting healing of diabetic ulcers

    Get PDF
    This study explores the synthesis and characterization of a novel double cross-linked hydrogel composed of polyvinyl alcohol (PVA), sodium alginate (SA), graphene oxide (GO), and glutathione (GSH), henceforth referred to as PVA/SA/GO/GSH. This innovative hydrogel system incorporates two distinct types of cross-linking networks and is meticulously engineered to exhibit sensitivity to high glucose and/or reactive oxygen species (ROS) environments. A sequential approach was adopted in the hydrogel formation. The initial phase involved the absorption of GSH onto GO, which was subsequently functionalized with boric acid and polyethylene glycol derivatives via a bio-orthogonal click reaction. This stage constituted the formation of the first chemically cross-linked network. Subsequently, freeze-thaw cycles were utilized to induce a secondary cross-linking process involving PVA and SA, thereby forming the second physically cross-linked network. The resultant PVA/SA/GO/GSH hydrogel retained the advantageous hydrogel properties such as superior water retention capacity and elasticity, and additionally exhibited the ability to responsively release GSH under changes in glucose concentration and/or ROS levels. This feature finds particular relevance in the therapeutic management of diabetic ulcers. Preliminary in vitro evaluation affirmed the hydrogel’s biocompatibility and its potential to promote cell migration, inhibit apoptosis, and exhibit antibacterial properties. Further in vivo studies demonstrated that the PVA/SA/GO/GSH hydrogel could facilitate the healing of diabetic ulcer sites by mitigating oxidative stress and regulating glucose levels. Thus, the developed PVA/SA/GO/GSH hydrogel emerges as a promising candidate for diabetic ulcer treatment, owing to its specific bio-responsive traits and therapeutic efficacy

    Paclitaxel-loaded phosphonated calixarene nanovesicles as a modular drug delivery platform

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/A modular p-phosphonated calix[4]arene vesicle (PCV) loaded with paclitaxel (PTX) and conjugated with folic acid as a cancer targeting ligand has been prepared using a thin film-sonication method. It has a pH-responsive capacity to trigger the release of the encapsulated PTX payload under mildly acidic conditions. PTX-loaded PCV conjugated with alkyne-modified PEG-folic acid ligands prepared via click ligation (fP-PCVPTX) has enhanced potency against folate receptor (FR)-positive SKOV-3 ovarian tumour cells over FR-negative A549 lung tumour cells. Moreover, fP-PCVPTX is also four times more potent than the non-targeting PCVPTX platform towards SKOV-3 cells. Overall, as a delivery platform the PCVs have the potential to enhance efficacy of anticancer drugs by targeting a chemotherapeutic payload specifically to tumours and triggering the release of the encapsulated drug in the vicinity of cancer cells

    Supplemental information.docx

    No full text
    Triple-negative breast cancer (TNBC) is a heterogeneous and clinically aggressive disease for which there is no approved targeted therapy available. A tactfully designed phosphorylated calixarene was used as vehicle to fabricate <a></a><a>curcumin-loaded </a>POCA4C6 micelles (CPM) by thin-film method. The morphology of CPM is typical unilamellar structure with an average particle size of 3.86 nm. The high encapsulation efficiency (EE) and drug loading (DL) of CPM were verified by LC-MS/MS. <i>In vitro</i>, our results indicated that CPM could pH-differentially and sustainably release curcumin. Further, CPM could more effectively inhibit human BT-549 breast cancer cells’ proliferation, invasion, migration, and mammospheres formation as well, probably due to cell apoptosis and strong suppression of key signalling proteins of nuclear β-catenin and AR expression. Moreover, after intra-tumoral injection of CPM, CPM could stick to the tumor tissue and substantially contain the growth of xenografted tumor, without noticeable systemic toxicity. Finally, destruction of breast cancer stem cells (BCSCs) was confirmed by significantly reducing CD44<sup>+</sup>CD133<sup>+</sup> expression. Together, our data underline a potential additive effect of curcumin eradicating BCSCs by forming CPM, providing an efficient therapeutic option for anti-TNBC therapy

    Targeting Strategies for Renal Cell Carcinoma: From Renal Cancer Cells to Renal Cancer Stem Cells

    No full text
    Renal cell carcinoma (RCC) is a common form of urologic tumor that originates from the highly heterogeneous epithelium of renal tubules. Over the last decade, targeting therapies to renal cancer cells have transformed clinical care for RCC. Recently, it was proposed that renal cancer stem cells (CSCs) isolated from renal carcinomas were responsible for driving tumor growth and resistance to conventional chemotherapy and radiotherapy, according to the theory of CSCs; this has provided the rationale for therapies targeting this aggressive cell population. Precise identification of renal CSC populations and the complete cell hierarchy will accurately inform characterization of disease subtypes. This will ultimately contribute to more personalized and targeted therapies. Here, we summarize potential targeting strategies for renal cancer cells and renal CSCs, including tyrosine kinase inhibitors, mammalian target of rapamycin inhibitors (mTOR), interleukins, CSC marker inhibitors, bone morphogenetic protein-2, antibody drug conjugates, and nanomedicine. In conclusion, targeting therapies for RCC represent new directions for exploration and clinical investigation and they plant a seed of hope for advanced clinical care

    Nanomedicine-mediated therapies to target breast cancer stem cells

    Get PDF
    Accumulating evidences have suggested the existence of breast cancer stem cells (BCSCs), which possess the potential of both self-renewal and differentiation. The origin of BCSCs might have relationship to the development of normal mammary stem cells. BCSCs are believed to play a key role in the initiation, recurrence and chemo- and/or radiotherapy resistances of breast cancer. Therefore, elimination of BCSCs is crucial for breast cancer therapy. However, conventional chemo and radiation therapies cannot eradicate BCSCs effectively. Fortunately, nanotechnology holds great potential for specific and efficient anti-BCSCs treatment. Smart nanocarriers can distinguish BCSCs from the other breast cancer cells and selectively deliver therapeutic agents to the BCSCs. Emerging findings suggest that BCSCs in breast cancer could be successfully inhibited and even eradicated by functionalized nanomedicines. In this review, we focus on origin of BCSCs, strategies used to target BCSCs, and summarize the nanotechnology-based delivery systems that have been applied for eliminating BCSCs in breast cancer

    DataSheet1_Double cross-linked graphene oxide hydrogel for promoting healing of diabetic ulcers.pdf

    No full text
    This study explores the synthesis and characterization of a novel double cross-linked hydrogel composed of polyvinyl alcohol (PVA), sodium alginate (SA), graphene oxide (GO), and glutathione (GSH), henceforth referred to as PVA/SA/GO/GSH. This innovative hydrogel system incorporates two distinct types of cross-linking networks and is meticulously engineered to exhibit sensitivity to high glucose and/or reactive oxygen species (ROS) environments. A sequential approach was adopted in the hydrogel formation. The initial phase involved the absorption of GSH onto GO, which was subsequently functionalized with boric acid and polyethylene glycol derivatives via a bio-orthogonal click reaction. This stage constituted the formation of the first chemically cross-linked network. Subsequently, freeze-thaw cycles were utilized to induce a secondary cross-linking process involving PVA and SA, thereby forming the second physically cross-linked network. The resultant PVA/SA/GO/GSH hydrogel retained the advantageous hydrogel properties such as superior water retention capacity and elasticity, and additionally exhibited the ability to responsively release GSH under changes in glucose concentration and/or ROS levels. This feature finds particular relevance in the therapeutic management of diabetic ulcers. Preliminary in vitro evaluation affirmed the hydrogel’s biocompatibility and its potential to promote cell migration, inhibit apoptosis, and exhibit antibacterial properties. Further in vivo studies demonstrated that the PVA/SA/GO/GSH hydrogel could facilitate the healing of diabetic ulcer sites by mitigating oxidative stress and regulating glucose levels. Thus, the developed PVA/SA/GO/GSH hydrogel emerges as a promising candidate for diabetic ulcer treatment, owing to its specific bio-responsive traits and therapeutic efficacy.</p

    DataSheet1_GSK-J1-loaded, hyaluronic acid-decorated metal-organic frameworks for the treatment of ovarian cancer.docx

    No full text
    Despite intensive research, ovarian cancer has the highest mortality rates among gynecological malignancies, partly because of its rapid acquisition of chemoresistance to platinum therapy. Hence, strategies are needed to effectively treat carboplatin-resistant ovarian cancer. In this study, we designed and prepared hyaluronic acid-decorated metal-organic frameworks for the targeted delivery of GSK-J1, a JMJD3 demethylase inhibitor (HA@MOF@GSK-J1) for the synergistic treatment of carboplatin-resistant ovarian cancer. HA@MOF@GSK-J1 showed outstanding effectiveness in the inhibition of ovarian cancer in vitro. Furthermore, HA@MOF@GSK-J1 demonstrated higher induction of apoptosis, reduced cell motility, and diminished cell spheroids by attenuating HER2 activity through the effectual activation of H3K27 methylation in its promoter area. Finally, our in vivo results confirmed that HA@MOF@GSK-J1 had better treatment efficacy for carboplatin-resistant ovarian tumor xenografts. Our results highlight the potential of HA@MOF@GSK-J1 as an effective strategy to improve the treatment of carboplatin-resistant ovarian cancer.</p

    Preparation and Characterization of Loperamide-Loaded Dynasan 114 Solid Lipid Nanoparticles for Increased Oral Absorption In the Treatment of Diarrhea

    Get PDF
    The aim of the project was to assemble two optimum solid lipid nanoparticle (SLN) formulations for oral delivery of loperamide (LPM) to treat different types of diarrhea, and to evaluate their release profiles in vitro and pharmacokinetic properties in vivo. In this work, glyceryl trimyristate (Dynasan 114) nanoparticles containing the drug LPM and sodium cholate as a stabilizer were prepared using a modified solvent evaporation technique. Two LPM-loaded SLNs, namely LPM-SLN-1 (LPM-SLN with a high ratio rate of lipid to drug) and LPM-SLN-2 (LPM-SLN with a low ratio rate of lipid to drug), were prepared by the solvent evaporation method. A change in the lipid concentration affects the characteristics of LPM-SLNs. The average sizes of the LPM-SLNs were 303 ± 18 nm and 519 ± 36 nm, separately, as analyzed by dynamic light scattering (DLS). The LPM-SLNs were found to be round with a smooth surface, as observed using a transmission electron microscope (TEM) and a scanning electron microscope (SEM). The average encapsulation efficiencies were 87 ± 3.78% w/w and 84 ± 5.17%, accordingly. In the in vitro release experiments, LPM-SLNs showed a continuous release profile of LPM without any burst release. The oral bioavailability of LPM-SLNs was analyzed using Wistar rats. The relative bioavailabilities of LPM-SLNs were 227% and 153%, respectively, as compared that of the LPM tablet. There was no difference in the Tmax between LPM-SLN-2 and the LPM tablet. In conclusion, LPM-SLN-1 significantly improved the oral bioavailability of LPM, while LPM-SLN-2 having the same swift action as the LPM tablet. These results demonstrate the potential of LPM-SLNs in the oral delivery of LPM to treat different types of diarrhea
    corecore