6,643 research outputs found
A Sub-Saturn Mass Planet, MOA-2009-BLG-319Lb
We report the gravitational microlensing discovery of a sub-Saturn mass planet, MOA-2009-BLG-319Lb, orbiting a K- or M-dwarf star in the inner Galactic disk or Galactic bulge. The high-cadence observations of the MOA-II survey discovered this microlensing event and enabled its identification as a high-magnification event approximately 24 hr prior to peak magnification. As a result, the planetary signal at the peak of this light curve was observed by 20 different telescopes, which is the largest number of telescopes to contribute to a planetary discovery to date. The microlensing model for this event indicates a planet-star mass ratio of q = (3.95 ± 0.02) × 10^(–4) and a separation of d = 0.97537 ± 0.00007 in units of the Einstein radius. A Bayesian analysis based on the measured Einstein radius crossing time, t_E, and angular Einstein radius, θ_E, along with a standard Galactic model indicates a host star mass of M_L = 0.38^(+0.34)_(–0.18) M_☉ and a planet mass of M_p = 50^(+44)_(–24) M_⊕, which is half the mass of Saturn. This analysis also yields a planet-star three-dimensional separation of a = 2.4^(+1.2)_(–0.6) AU and a distance to the planetary system of D_L = 6.1^(+1.1)_(–1.2) kpc. This separation is ~2 times the distance of the snow line, a separation similar to most of the other planets discovered by microlensing
Supersymmetric Matrix model on Z-orbifold
We find that the IIA Matrix models defined on the non-compact ,
and orbifolds preserve supersymmetry where the fermions
are on-mass-shell Majorana-Weyl fermions. In these examples supersymmetry is
preserved both in the orbifolded space and in the non-orbifolded space at the
same time. The Matrix model on orbifold has the same
supersymmetry as the case of
orbifold which was pointed out previously.
On the other hand the Matrix models on and orbifold have
a half of the supersymmetry. We further find that the Matrix model
on orbifold with a parity-like identification preserves
supersymmetry.Comment: 21 pages, no figur
Moduli space volume of vortex and localization
Volume of moduli space of BPS vortices on a compact genus h Riemann surface
Sigma_h is evaluated by means of topological field theory and localization
technique. Vortex in Abelian gauge theory with a single charged scalar field
(ANO vortex) is studied first and is found that the volume of the moduli space
agrees with the previous results obtained more directly by integrating over the
moduli space metric. Next we extend the evaluation to non-Abelian gauge groups
and multi-flavors of scalar fields in the fundamental representation. We find
that the result of localization can be consistently understood in terms of
moduli matrix formalism wherever possible. More details are found in our paper
in Prog.Theor.Phys.126 (2011) 637.Comment: 10 pages, talk at the international conference "quantum theory and
symmetries 7" in prague, august 7-13, 201
Entanglement purification protocols for all graph states
We present multiparty entanglement purification protocols that are capable of
purifying arbitrary graph states directly. We develop recurrence and breeding
protocols and compare our methods with strategies based on bipartite
entanglement purification in static and communication scenarios. We find that
direct multiparty purification is of advantage with respect to achievable
yields and minimal required fidelity in static scenarios, and with respect to
obtainable fidelity in the case of noisy operations in both scenarios.Comment: revtex 10 pages, 6 figure
Tunneling conductance in normal metal - triplet superconductor junction
We calculate the tunneling conductance spectra of a normal metal / insulator
/ triplet superconductor from the reflection amplitudes using the
Blonder-Tinkham-Klapwijk (BTK) formula. For the triplet superconductor we
assume one special p-wave order parameter having line nodes and two two
dimensional -wave order parameters with line nodes breaking the
time-reversal symmetry. Also we examine nodeless pairing potentials. The
tunneling peaks are due to the formation of bound states for each surface
orientation at discrete quasiparticles trajectory angles. The tunneling spectra
can be used to distinguish the possible candidate pairing states of the
superconductor SrRuO.Comment: 4 pages with 3 figures, presented at the second Euroconference on
Vortex Matter in Superconductors, 15-25 September 2001, Crete, Greec
Relationship of upflowing ion beams and conics around the dayside cusp/cleft region to the interplanetary conditions
International audienceThe dayside cusp/cleft region is known as a major source of upflowing ionospheric ions to the magnetosphere. Since the ions are supposed to be energized by an input of energy from the dayside magnetospheric boundary region, we examined the possible influence of the interplanetary conditions on dayside ion beams and conics observed by the polar-orbiting Exos-D (Akebono) satellite. We found that both the solar wind velocity and density, as well as IMF By and Bz , affect the occurrence frequency of ion conics. The energy of ion conics also depends on the solar wind velocity, IMF By and Bz . The ion beams around the local noon are not significantly controlled by the interplanetary conditions. The results reveal that ion convection, as well as the energy source, is important to understand the production of dayside ion conics while that of ion beams basically reflects the intensity of local field-aligned currents
Modeling of occurrence frequencies of ion conics as a function of altitude and conic angle
International audienceThe occurrence frequencies of dayside ion conics with various conic angles are obtained as a function of altitude from Exos-D (Akebono) observations. We made a model calculation of ion conic evolution to match the observation results. The observed occurrence frequencies of ion conics with 80° to 90° conic angle are used as an input to the model and the occurrence frequencies of ion conics with smaller conic angles are numerically calculated at higher altitudes. The calculated occurrence frequencies are compared with the observed ones of ion conics with smaller conic angles. We take into account conic angle variation with altitude in both adiabatic and non-adiabatic cases, horizontal extension of ion conics due to E×B drift, and evolution to elevated conics and ion beams in the model. In the adiabatic case, the conic angle decreases with increasing altitude much faster than was observed. The occurrence frequency of small-angle conics is much larger than the observed value without E×B drift and evolution to the other UFIs. An agreement is obtained by assuming non-adiabatic variation of conic angles with altitude and an ion E×B drift to gyro velocity ratio of 0.08 to 0.6, depending on geomagnetic activities
- …