8,301 research outputs found
Brown-Rho Scaling in the Strong Coupling Lattice QCD
We examine the Brown-Rho scaling for meson masses in the strong coupling
limit of lattice QCD with one species of staggered fermion. Analytical
expression of meson masses is derived at finite temperature and chemical
potential. We find that meson masses are approximately proportional to the
equilibrium value of the chiral condensate, which evolves as a function of
temperature and chemical potential.Comment: Prepared for Chiral Symmetry in Hadron and Nuclear Physics
(Chiral07), Nov. 13-16, 2007, Osaka, Japa
The MHD Kelvin-Helmholtz Instability II: The Roles of Weak and Oblique Fields in Planar Flows
We have carried out high resolution MHD simulations of the nonlinear
evolution of Kelvin-Helmholtz unstable flows in 2 1/2 dimensions. The modeled
flows and fields were initially uniform except for a thin shear layer with a
hyperbolic tangent velocity profile and a small, normal mode perturbation. The
calculations consider periodic sections of flows containing magnetic fields
parallel to the shear layer, but projecting over a full range of angles with
respect to the flow vectors. They are intended as preparation for fully 3D
calculations and to address two specific questions raised in earlier work: 1)
What role, if any, does the orientation of the field play in nonlinear
evolution of the MHD Kelvin-Helmholtz instability in 2 1/2 D. 2) Given that the
field is too weak to stabilize against a linear perturbation of the flow, how
does the nonlinear evolution of the instability depend on strength of the
field. The magnetic field component in the third direction contributes only
through minor pressure contributions, so the flows are essentially 2D. Even a
very weak field can significantly enhance the rate of energy dissipation. In
all of the cases we studied magnetic field amplification by stretching in the
vortex is limited by tearing mode, ``fast'' reconnection events that isolate
and then destroy magnetic flux islands within the vortex and relax the fields
outside the vortex. If the magnetic tension developed prior to reconnection is
comparable to Reynolds stresses in the flow, that flow is reorganized during
reconnection. Otherwise, the primary influence on the plasma is generation of
entropy. The effective expulsion of flux from the vortex is very similar to
that shown by Weiss for passive fields in idealized vortices with large
magnetic Reynolds numbers. We demonstrated that thisComment: 23 pages of ApJ Latex (aaspp4.sty) with 10 figures, high resolution
postscript images for figs 4-9 available through anonymous at
ftp://ftp.msi.umn.edu/pub/twj To appear in the June 10, 1997 Ap
Temperature Dependence of the Cyclotron Mass in n-Type CdS
Recent cyclotron resonance experiments in n-type CdS at ultra-high magnetic
fields have revealed a pronounced maximum of the electron cyclotron mass as a
function of temperature. In order to interpret these data, we calculate the
magneto-absorption spectra of polarons in n-CdS using the arbitrary-coupling
approach. We show that in high magnetic fields the polaron effects beyond the
weak-coupling approximation clearly reveal themselves in the magneto-optical
absorption even at relatively small values of the Froehlich coupling constant.
In particular, those effects result in a non-monotonous behaviour of the
cyclotron mass as a function of temperature. We extend the theory to take into
account a combined effect of several scattering mechanisms on the
magneto-absorption spectra. The extended theory allows us to interpret
quantitatively the experimentally observed behaviour of the cyclotron mass in
CdS.Comment: 4 pages, 3 figures, E-mail addresses: [email protected],
[email protected]
Discovery and Assessment of New Target Sites for Anti-HIV Therapies
Human immunodeficiency virus (HIV) infects cells by endocytosis and takes over parts of the cell’s reaction pathways in order to reproduce itself and spread the infection. One such pathway taken over by HIV becomes the inflammatory pathway which uses Nuclear Factor κB (NF-κB) as the principal transcription factor. Therefore, knocking out the NF-κB pathway would prevent HIV from reproducing itself. In this report, our goal is to produce a simple model for this pathway with which we can identify potential targets for anti-HIV therapies and test out various hypotheses. We present a very simple model with four coupled first-order ODEs and see what happens if we treat IκK concentration as a parameter that can be controlled (by some unspecified means). In Section 3, we augment this model to account for activation and deactivation of IκK, which is controlled (again, by some unspecified means) by TNF
The MHD Kelvin-Helmholtz Instability III: The Role of Sheared Magnetic Field in Planar Flows
We have carried out simulations of the nonlinear evolution of the
magnetohydrodynamic (MHD) Kelvin-Helmholtz (KH) instability for compressible
fluids in -dimensions, extending our previous work by Frank et al
(1996) and Jones \etal (1997). In the present work we have simulated flows in
the x-y plane in which a ``sheared'' magnetic field of uniform strength
``smoothly'' rotates across a thin velocity shear layer from the z direction to
the x direction, aligned with the flow field. We focus on dynamical evolution
of fluid features, kinetic energy dissipation, and mixing of the fluid between
the two layers, considering their dependence on magnetic field strength for
this geometry. The introduction of magnetic shear can allow a Cat's Eye-like
vortex to form, even when the field is stronger than the nominal linear
instability limit given above. For strong fields that vortex is asymmetric with
respect to the preliminary shear layer, however, so the subsequent dissipation
is enhanced over the uniform field cases of comparable field strength. In fact,
so long as the magnetic field achieves some level of dynamical importance
during an eddy turnover time, the asymmetries introduced through the magnetic
shear will increase flow complexity, and, with that, dissipation and mixing.
The degree of the fluid mixing between the two layers is strongly influenced by
the magnetic field strength. Mixing of the fluid is most effective when the
vortex is disrupted by magnetic tension during transient reconnection, through
local chaotic behavior that follows.Comment: 14 pages including 9 figures (4 figures in degraded jpg format), full
paper with original quality figures available via anonymous ftp at
ftp://canopus.chungnam.ac.kr/ryu/mhdkh2d.uu, to appear in The Astrophysical
Journa
The Magnetohydrodynamic Kelvin-Helmholtz Instability: A Three-Dimensional Study of Nonlinear Evolution
We investigate through high resolution 3D simulations the nonlinear evolution
of compressible magnetohydrodynamic flows subject to the Kelvin-Helmholtz
instability. We confirm in 3D flows the conclusion from our 2D work that even
apparently weak magnetic fields embedded in Kelvin-Helmholtz unstable plasma
flows can be fundamentally important to nonlinear evolution of the instability.
In fact, that statement is strengthened in 3D by this work, because it shows
how field line bundles can be stretched and twisted in 3D as the quasi-2D Cat's
Eye vortex forms out of the hydrodynamical motions. In our simulations twisting
of the field may increase the maximum field strength by more than a factor of
two over the 2D effect. If, by these developments, the Alfv\'en Mach number of
flows around the Cat's Eye drops to unity or less, our simulations suggest
magnetic stresses will eventually destroy the Cat's Eye and cause the plasma
flow to self-organize into a relatively smooth and apparently stable flow that
retains memory of the original shear. For our flow configurations the regime in
3D for such reorganization is , expressed in
terms of the Alfv\'en Mach number of the original velocity transition and the
initial Alfv\'en speed projected to the flow plan. For weaker fields the
instability remains essentially hydrodynamic in early stages, and the Cat's Eye
is destroyed by the hydrodynamic secondary instabilities of a 3D nature. Then,
the flows evolve into chaotic structures that approach decaying isotropic
turbulence. In this stage, there is considerable enhancement to the magnetic
energy due to stretching, twisting, and turbulent amplification, which is
retained long afterwards. The magnetic energy eventually catches up to the
kinetic energy, and the nature of flows become magnetohydrodynamic.Comment: 11 pages, 12 figures in degraded jpg format (2 in color), paper with
original quality figures available via ftp at
ftp://ftp.msi.umn.edu/pub/users/twj/mhdkh3dd.ps.gz or
ftp://canopus.chungnam.ac.kr/ryu/mhdkh3dd.ps.gz, to appear in The
Astrophysical Journa
Mediators of mechanotransduction between bone cells
Mechanical forces are known to regulate the function of tissues in the body, including bone. Bone adapts to its mechanical environment by altering its shape and increasing its size in response to increases in mechanical load associated with exercise, and by decreasing its size in response to decreases in mechanical load associated with microgravity or prolonged bed rest. Changes in bone size and shape are produced by a cooperative action of two main types of the bone cells - osteoclasts that destroy bone and osteoblasts that build bone. These cell types come from different developmental origins, and vary greatly in their characteristics, such as size, shape, and expression of receptor subtypes, which potentially may affect their responses to mechanical stimuli. The objective of this study is to compare the responses of osteoclasts and osteoblasts to mechanical stimulation.
This study has allowed us to conclude the following:
1. A mediator is released from a single source cell.
2. The response to the mediator changes with distance.
3. The value of the apparent diffusion coeficient increases with distance.
4. A plausible proposed mechanism is that ATP is released and degrades to ADP.
5. Future experiments are required to confim that ATP is the mediator as suggested
Phase diagram at finite temperature and quark density in the strong coupling region of lattice QCD for color SU(3)
We study the phase diagram of quark matter at finite temperature (T) and
chemical potential (mu) in the strong coupling region of lattice QCD for color
SU(3). Baryon has effects to extend the hadron phase to a larger mu direction
relative to Tc at low temperatures in the strong coupling limit. With the 1/g^2
corrections, Tc is found to decrease rapidly as g decreases, and the shape of
the phase diagram becomes closer to that expected in the real world.Comment: 4 pages, 4 figures. To appear in the proceedings of the 19th
International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions,
Shanghai, China, Nov. 14-20, 2006 (Quark Matter 2006
- …