15 research outputs found

    The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella

    Independent Localization of Plasma Membrane and Chloroplast Components during Eyespot Assembly

    No full text
    WOS: 000323756100010PubMed ID: 23873865Like many algae, Chlamydomonas reinhardtii is phototactic, using two anterior flagella to swim toward light optimal for photosynthesis. The flagella are responsive to signals initiated at the photosensory eyespot, which comprises photoreceptors in the plasma membrane and layers of pigment granules in the chloroplast. Phototaxis depends on placement of the eyespot at a specific asymmetric location relative to the flagella, basal bodies, and bundles of two or four highly acetylated microtubules, termed rootlets, which extend from the basal bodies toward the posterior of the cell. Previous work has shown that the eyespot is disassembled prior to cell division, and new eyespots are assembled in daughter cells adjacent to the nascent four-membered rootlet associated with the daughter basal body (D4), but the chronology of these assembly events has not been determined. Here we use immunofluorescence microscopy to follow assembly and acetylation of the D4 rootlet, localization of individual eyespot components in the plasma membrane or chloroplast envelope, and flagellar emergence during and immediately following cell division. We find that the D4 rootlet is assembled before the initiation of eyespot assembly, which occurs within the same time frame as rootlet acetylation and flagellar outgrowth. Photoreceptors in the plasma membrane are correctly localized in eyespot mutant cells lacking pigment granule layers, and chloroplast components of the eyespot assemble in mutant cells in which photoreceptor localization is retarded. The data suggest that plasma membrane and chloroplast components of the eyespot are independently responsive to a cytoskeletal positioning cue.National Science FoundationNational Science Foundation (NSF) [MCB 1157795]Support for this research was provided by the National Science Foundation, award no. MCB 1157795

    C2 Domain Protein MIN1 Promotes Eyespot Organization in Chlamydomonas reinhardtii▿ †

    Get PDF
    Assembly and asymmetric localization of the photosensory eyespot in the biflagellate, unicellular green alga Chlamydomonas reinhardtii requires coordinated organization of photoreceptors in the plasma membrane and pigment granule/thylakoid membrane layers in the chloroplast. min1 (mini-eyed) mutant cells contain abnormally small, disorganized eyespots in which the chloroplast envelope and plasma membrane are no longer apposed. The MIN1 gene, identified here by phenotypic rescue, encodes a protein with an N-terminal C2 domain and a C-terminal LysM domain separated by a transmembrane sequence. This novel domain architecture led to the hypothesis that MIN1 is in the plasma membrane or the chloroplast envelope, where membrane association of the C2 domain promotes proper eyespot organization. Mutation of conserved C2 domain loop residues disrupted association of the MIN1 C2 domain with the chloroplast envelope in moss cells but did not abolish eyespot assembly in Chlamydomonas. In min1 null cells, channelrhodopsin-1 (ChR1) photoreceptor levels were reduced, indicating a role for MIN1 in ChR1 expression and/or stability. However, ChR1 localization was only minimally disturbed during photoautotrophic growth of min1 cells, conditions under which the pigment granule layers are disorganized. The data are consistent with the hypothesis that neither MIN1 nor proper organization of the plastidic components of the eyespot is essential for localization of ChR1
    corecore