9 research outputs found

    Conformational Selectivity of ITK Inhibitors: Insights from Molecular Dynamics Simulations

    No full text
    Interleukin-2-inducible T-cell kinase (ITK) regulates the response to T-cell receptor signaling and is a drug target for inflammatory and immunological diseases. Molecules that bind preferentially to the active form of ITK have low selectivity between kinases, whereas those that bind preferentially to the inactive form have high selectivity for ITK. Therefore, computational methods to predict the conformational selectivity of compounds are required to design highly selective ITK inhibitors. In this study, we performed absolute binding free-energy perturbation (ABFEP) simulations for 11 compounds on both active and inactive forms of ITK, and the calculated binding free energies were compared with experimental data. The conformational selectivity of 10 of the 11 compounds was correctly predicted using ABFEP. To investigate the mechanism underlying the stabilization of the active and inactive structures by the compounds, we performed extensive, conventional molecular dynamics simulations, which revealed that the compound-induced stabilization of the P-loop and linkage of conformational changes in L489, V419, F501, and M410 upon compound binding were critical factors. A guideline for designing inactive-form binders is proposed based on these key structural factors. The ABFEP and the created guidelines are expected to facilitate the discovery of highly selective ITK inhibitors

    Conformational Selectivity of ITK Inhibitors: Insights from Molecular Dynamics Simulations

    No full text
    Interleukin-2-inducible T-cell kinase (ITK) regulates the response to T-cell receptor signaling and is a drug target for inflammatory and immunological diseases. Molecules that bind preferentially to the active form of ITK have low selectivity between kinases, whereas those that bind preferentially to the inactive form have high selectivity for ITK. Therefore, computational methods to predict the conformational selectivity of compounds are required to design highly selective ITK inhibitors. In this study, we performed absolute binding free-energy perturbation (ABFEP) simulations for 11 compounds on both active and inactive forms of ITK, and the calculated binding free energies were compared with experimental data. The conformational selectivity of 10 of the 11 compounds was correctly predicted using ABFEP. To investigate the mechanism underlying the stabilization of the active and inactive structures by the compounds, we performed extensive, conventional molecular dynamics simulations, which revealed that the compound-induced stabilization of the P-loop and linkage of conformational changes in L489, V419, F501, and M410 upon compound binding were critical factors. A guideline for designing inactive-form binders is proposed based on these key structural factors. The ABFEP and the created guidelines are expected to facilitate the discovery of highly selective ITK inhibitors

    Computational Methods for Configurational Entropy Using Internal and Cartesian Coordinates

    No full text
    The configurational entropy of solute molecules is a crucially important quantity to study various biophysical processes. Consequently, it is necessary to establish an efficient quantitative computational method to calculate configurational entropy as accurately as possible. In the present paper, we investigate the quantitative performance of the quasi-harmonic and related computational methods, including widely used methods implemented in popular molecular dynamics (MD) software packages, compared with the Clausius method, which is capable of accurately computing the change of the configurational entropy upon temperature change. Notably, we focused on the choice of the coordinate systems (i.e., internal or Cartesian coordinates). The Boltzmann-quasi-harmonic (BQH) method using internal coordinates outperformed all the six methods examined here. The introduction of improper torsions in the BQH method improves its performance, and anharmonicity of proper torsions in proteins is identified to be the origin of the superior performance of the BQH method. In contrast, widely used methods implemented in MD packages show rather poor performance. In addition, the enhanced sampling of replica-exchange MD simulations was found to be efficient for the convergent behavior of entropy calculations. Also in folding/unfolding transitions of a small protein, Chignolin, the BQH method was reasonably accurate. However, the independent term without the correlation term in the BQH method was most accurate for the folding entropy among the methods considered in this study, because the QH approximation of the correlation term in the BQH method was no longer valid for the divergent unfolded structures

    Functional Rotation Induced by Alternating Protonation States in the Multidrug Transporter AcrB: All-Atom Molecular Dynamics Simulations

    No full text
    The multidrug transporter AcrB actively exports a wide variety of noxious compounds using proton-motive force as an energy source in Gram-negative bacteria. AcrB adopts an asymmetric structure comprising three protomers with different conformations that are sequentially converted during drug export; these cyclic conformational changes during drug export are referred to as functional rotation. To investigate functional rotation driven by proton-motive force, all-atom molecular dynamics simulations were performed. Using different protonation states for the titratable residues in the middle of the transmembrane domain, our simulations revealed the correlation between the specific protonation states and the side-chain configurations. Changing the protonation state for Asp408 induced a spontaneous structural transition, which suggests that the proton translocation stoichiometry may be one proton per functional rotation cycle. Furthermore, our simulations demonstrate that alternating the protonation states in the transmembrane domain induces functional rotation in the porter domain, which is primarily responsible for drug transport

    Comparative Simulations of the Ground State and the M-Intermediate State of the Sensory Rhodopsin IIā€“Transducer Complex with a HAMP Domain Model

    No full text
    The complex of sensory rhodopsin II (SRII) and its cognate transducer HtrII (2:2 SRIIā€“HtrII complex) consists of a photoreceptor and its signal transducer, respectively, associated with negative phototaxis in extreme halophiles. In this study to investigate how photoexcitation in SRII affects the structures of the complex, we conducted two series of molecular dynamics simulations of the complex of SRII and truncated HtrII (residues 1ā€“136) of <i>Natronomonas pharaonis</i> linked with a modeled HAMP domain in the lipid bilayer using the two crystal structures of the ground state and the M-intermediate state as the starting structures. The simulation results showed significant enhancements of the structural differences observed between the two crystal structures. Helix F of SRII showed an outward motion, and the C-terminal end of transmembrane domain 2 (TM2) in HtrII rotated by āˆ¼10Ā°. The most significant structural changes were observed in the overall orientations of the two SRII molecules, closed in the ground state and open in the M-state. This change was attributed to substantial differences in the structure of the four-helix bundle of the HtrII dimer causing the apparent rotation of TM2. These simulation results established the structural basis for the various experimental observations explaining the structural differences between the ground state and the M-intermediate state

    Binding and Unbinding Pathways of Peptide Substrates on the SARS-CoVā€‘2 3CL Protease

    No full text
    Based on many crystal structures of ligand complexes, much study has been devoted to understanding the molecular recognition of SARS-CoV-2 3C-like protease (3CLpro), a potent drug target for COVID-19. In this research, to extend this present static view, we examined the kinetic process of binding/unbinding of an eight-residue substrate peptide to/from 3CLpro by evaluating the path ensemble with the weighted ensemble simulation. The path ensemble showed the mechanism of how a highly flexible peptide folded into the bound form. At the early stage, the dominant motion was the diffusion on the protein surface showing a broad distribution, whose center was led into the cleft of the chymotrypsin fold. We observed a definite sequential formation of the hydrogen bonds at the later stage occurring in the cleft, initiated between Glu166 (3CLpro) and P3_Val (peptide), followed by binding to the oxyanion hole and completed by the sequence-specific recognition at P1_Gln

    Apo- and Antagonist-Binding Structures of Vitamin D Receptor Ligand-Binding Domain Revealed by Hybrid Approach Combining Small-Angle Xā€‘ray Scattering and Molecular Dynamics

    No full text
    Vitamin D receptor (VDR) controls the expression of numerous genes through the conformational change caused by binding 1Ī±,25-dihydroxyvitamin D<sub>3</sub>. Helix 12 in the ligand-binding domain (LBD) is key to regulating VDR activation. The structures of apo VDR-LBD and the VDR-LBD/antagonist complex are unclear. Here, we reveal their unprecedented structures in solution using a hybrid method combining small-angle X-ray scattering and molecular dynamics simulations. In apo rat VDR-LBD, helix 12 is partially unraveled, and it is positioned around the canonical active position and fluctuates. Helix 11 greatly bends toward the outside at Q396, creating a kink. In the rat VDR-LBD/antagonist complex, helix 12 does not generate the activation function 2 surface, and loop 11ā€“12 is remarkably flexible compared to that in the apo rat VDR-LBD. On the basis of these structural insights, we propose a ā€œfolding-door modelā€ to describe the mechanism of agonism/antagonism of VDR-LBD

    Gas-Phase Structure of the Histone Multimers Characterized by Ion Mobility Mass Spectrometry and Molecular Dynamics Simulation

    No full text
    The minimum structural unit of chromatin is the nucleosome core particle (NCP), consisting of 146 bp of DNA wrapped around a histone octamer, which itself contains two H2A/H2B dimers and one (H3/H4)<sub>2</sub> tetramer. These multimers possess functionally important tail regions that are intrinsically disordered. In order to elucidate the mechanisms behind NCP assembly and disassembly processes, which are highly related to gene expression, structural characterization of the H2A/H2B dimer and (H3/H4)<sub>2</sub> tetramer will be of importance. In the present study, human histone multimers with disordered tail regions were characterized by electrospray ionization (ESI) ion mobility-mass spectrometry (IM-MS) and molecular dynamics (MD) simulation. Experimentally obtained arrival times of these histone multimer ions showed rather wide distributions, implying that multiple conformers exist for each histone multimer in the gas phase. To examine their structures, MD simulations of the histone multimers were performed first in solution and then <i>in vacuo</i> at four temperatures, resulting in a variety of histone multimer structures. Theoretical collision cross-section (CCS) values calculated for the simulated structures revealed that structural models with smaller CCS values had more compact tail regions than those with larger CCS values. This implied that variation of the CCS values of the histone multimers were primarily due to the random behaviors of the tail regions in the gas phase. The combination of IM-MS and MD simulation enabled clear and comprehensive characterization of the gas-phase structures of histone multimers containing disordered tails

    Molecular Mechanism of ATP Hydrolysis in F<sub>1</sub>-ATPase Revealed by Molecular Simulations and Single-Molecule Observations

    No full text
    Enzymatic hydrolysis of nucleotide triphosphate (NTP) plays a pivotal role in protein functions. In spite of its biological significance, however, the chemistry of the hydrolysis catalysis remains obscure because of the complex nature of the reaction. Here we report a study of the molecular mechanism of hydrolysis of adenosine triphosphate (ATP) in F<sub>1</sub>-ATPase, an ATP-driven rotary motor protein. Molecular simulations predicted and single-molecule observation experiments verified that the rate-determining step (RDS) is proton transfer (PT) from the lytic water molecule, which is strongly activated by a metaphosphate generated by a preceding P<sub>Ī³</sub>ā€“O<sub>Ī²</sub> bond dissociation (POD). Catalysis of the POD that triggers the chain activation of the PT is fulfilled by hydrogen bonds between Walker motif A and an arginine finger, which commonly exist in many NTPases. The reaction mechanism unveiled here indicates that the protein can regulate the enzymatic activity for the function in both the POD and PT steps despite the fact that the RDS is the PT step
    corecore