52 research outputs found

    Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): And randomised, phase 3, open-label, multicentre study

    Get PDF
    Background: Bortezomib with dexamethasone is a standard treatment option for relapsed or refractory multiple myeloma. Carfilzomib with dexamethasone has shown promising activity in patients in this disease setting. The aim of this study was to compare the combination of carfilzomib and dexamethasone with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma. Methods: In this randomised, phase 3, open-label, multicentre study, patients with relapsed or refractory multiple myeloma who had one to three previous treatments were randomly assigned (1:1) using a blocked randomisation scheme (block size of four) to receive carfilzomib with dexamethasone (carfilzomib group) or bortezomib with dexamethasone (bortezomib group). Randomisation was stratified by previous proteasome inhibitor therapy, previous lines of treatment, International Staging System stage, and planned route of bortezomib administration if randomly assigned to bortezomib with dexamethasone. Patients received treatment until progression with carfilzomib (20 mg/m2 on days 1 and 2 of cycle 1; 56 mg/m2 thereafter; 30 min intravenous infusion) and dexamethasone (20 mg oral or intravenous infusion) or bortezomib (1·3 mg/m2; intravenous bolus or subcutaneous injection) and dexamethasone (20 mg oral or intravenous infusion). The primary endpoint was progression-free survival in the intention-to-treat population. All participants who received at least one dose of study drug were included in the safety analyses. The study is ongoing but not enrolling participants; results for the interim analysis of the primary endpoint are presented. The trial is registered at ClinicalTrials.gov, number NCT01568866. Findings: Between June 20, 2012, and June 30, 2014, 929 patients were randomly assigned (464 to the carfilzomib group; 465 to the bortezomib group). Median follow-up was 11·9 months (IQR 9·3-16·1) in the carfilzomib group and 11·1 months (8·2-14·3) in the bortezomib group. Median progression-free survival was 18·7 months (95% CI 15·6-not estimable) in the carfilzomib group versus 9·4 months (8·4-10·4) in the bortezomib group at a preplanned interim analysis (hazard ratio [HR] 0·53 [95% CI 0·44-0·65]; p<0·0001). On-study death due to adverse events occurred in 18 (4%) of 464 patients in the carfilzomib group and in 16 (3%) of 465 patients in the bortezomib group. Serious adverse events were reported in 224 (48%) of 463 patients in the carfilzomib group and in 162 (36%) of 456 patients in the bortezomib group. The most frequent grade 3 or higher adverse events were anaemia (67 [14%] of 463 patients in the carfilzomib group vs 45 [10%] of 456 patients in the bortezomib group), hypertension (41 [9%] vs 12 [3%]), thrombocytopenia (39 [8%] vs 43 [9%]), and pneumonia (32 [7%] vs 36 [8%]). Interpretation: For patients with relapsed or refractory multiple myeloma, carfilzomib with dexamethasone could be considered in cases in which bortezomib with dexamethasone is a potential treatment option. Funding: Onyx Pharmaceuticals, Inc., an Amgen subsidiary

    ATP-Evoked Intracellular Ca Signaling of Different Supporting Cells in the Hearing Mouse Hemicochlea

    Get PDF
    Hearing and its protection is regulated by ATP-evoked Ca2+ signaling in the supporting cells of the organ of Corti, however, the unique anatomy of the cochlea hampers observing these mechanisms. For the first time, we have performed functional ratiometric Ca2+ imaging (fura-2) in three different supporting cell types in the hemicochlea preparation of hearing mice to measure purinergic receptor-mediated Ca2+ signaling in pillar, Deiters' and Hensen's cells. Their resting [Ca2+]i was determined and compared in the same type of preparation. ATP evoked reversible, repeatable and dose-dependent Ca2+ transients in all three cell types, showing desensitization. Inhibiting the Ca2+ signaling of the ionotropic P2X (omission of extracellular Ca2+) and metabotropic P2Y purinergic receptors (depletion of intracellular Ca2+ stores) revealed the involvement of both receptor types. Detection of P2X2,3,4,6,7 and P2Y1,2,6,12,14 receptor mRNAs by RT-PCR supported this finding and antagonism by PPADS suggested different functional purinergic receptor population in pillar versus Deiters' and Hensen's cells. The sum of the extra- and intracellular Ca2+-dependent components of the response was about equal with the control ATP response (linear additivity) in pillar cells, and showed supralinearity in Deiters' and Hensen's cells. Calcium-induced calcium release might explain this synergistic interaction. The more pronounced Ca2+ leak from the endoplasmic reticulum in Deiters' and Hensen's cells, unmasked by cyclopiazonic acid, may also suggests the higher activity of the internal stores in Ca2+ signaling in these cells. Differences in Ca2+ homeostasis and ATP-induced Ca2+ signaling might reflect the distinct roles these cells play in cochlear function and pathophysiology

    Relationale Datenbasis als Kern für ein Integriertes Interaktives Informationssystem

    No full text

    Data Processing and Analysis for Space-Based Astronomy

    No full text

    Editorial: Relating software requirements and architectures

    No full text
    Requirements engineering and software architecture have become established areas of software engineering research, education, and practice. Requirements engineering is concerned with discovering the purpose of a software system and the contexts in which it will be used (Nuseibeh and Easterbrook, 2000). Software architecture is concerned with the study of the structure of software, including its topology, properties, constituent components and their relationships and patterns of combination (Perry and Wolf, 1992). There have been significant research advances made in both software requirements and architectures, and fundamental differences and relationships between the two areas have come to light which are outlined

    Conclusions

    No full text
    The preceding chapters in this book address a plethora of intriguing challenges, all directed towards bridging the gap between requirements engineering and architecture. These challenges, put together, capture a large part of the problem space currently faced by architects and requirements engineers alike. We review the various challenges that have been discussed in the preceding chapters. We present an abstracted form of the emerging trends that have been identified to deal with these challenges, referring back to individual chapters in order to exemplify them

    Preface

    No full text
    Abstract not available
    corecore