68 research outputs found

    Commissioning of the vacuum system of the KATRIN Main Spectrometer

    Get PDF
    The KATRIN experiment will probe the neutrino mass by measuring the beta-electron energy spectrum near the endpoint of tritium beta-decay. An integral energy analysis will be performed by an electro-static spectrometer (Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m^3, and a complex inner electrode system with about 120000 individual parts. The strong magnetic field that guides the beta-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300{\deg}C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure

    Abnormal resting-state cortical coupling in chronic tinnitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Subjective tinnitus is characterized by an auditory phantom perception in the absence of any physical sound source. Consequently, in a quiet environment, tinnitus patients differ from control participants because they constantly perceive a sound whereas controls do not. We hypothesized that this difference is expressed by differential activation of distributed cortical networks.</p> <p>Results</p> <p>The analysis was based on a sample of 41 participants: 21 patients with chronic tinnitus and 20 healthy control participants. To investigate the architecture of these networks, we used phase locking analysis in the 1–90 Hz frequency range of a minute of resting-state MEG recording. We found: 1) For tinnitus patients: A significant decrease of inter-areal coupling in the alpha (9–12 Hz) band and an increase of inter-areal coupling in the 48–54 Hz gamma frequency range relative to the control group. 2) For both groups: an inverse relationship (r = -.71) of the alpha and gamma network coupling. 3) A discrimination of 83% between the patient and the control group based on the alpha and gamma networks. 4) An effect of manifestation on the distribution of the gamma network: In patients with a tinnitus history of less than 4 years, the left temporal cortex was predominant in the gamma network whereas in patients with tinnitus duration of more than 4 years, the gamma network was more widely distributed including more frontal and parietal regions.</p> <p>Conclusion</p> <p>In the here presented data set we found strong support for an alteration of long-range coupling in tinnitus. Long-range coupling in the alpha frequency band was decreased for tinnitus patients while long-range gamma coupling was increased. These changes discriminate well between tinnitus and control participants. We propose a tinnitus model that integrates this finding in the current knowledge about tinnitus. Furthermore we discuss the impact of this finding to tinnitus therapies using Transcranial Magnetic Stimulation (TMS).</p

    Association of Tinnitus and Electromagnetic Hypersensitivity: Hints for a Shared Pathophysiology?

    Get PDF
    BACKGROUND: Tinnitus is a frequent condition with high morbidity and impairment in quality of life. The pathophysiology is still incompletely understood. Electromagnetic fields are discussed to be involved in the multi-factorial pathogenesis of tinnitus, but data proofing this relationship are very limited. Potential health hazards of electromagnetic fields (EMF) have been under discussion for long. Especially, individuals claiming themselves to be electromagnetic hypersensitive suffer from a variety of unspecific symptoms, which they attribute to EMF-exposure. The aim of the study was to elucidate the relationship between EMF-exposure, electromagnetic hypersensitivity and tinnitus using a case-control design. METHODOLOGY: Tinnitus occurrence and tinnitus severity were assessed by questionnaires in 89 electromagnetic hypersensitive patients and 107 controls matched for age-, gender, living surroundings and workplace. Using a logistic regression approach, potential risk factors for the development of tinnitus were evaluated. FINDINGS: Tinnitus was significantly more frequent in the electromagnetic hypersensitive group (50.72% vs. 17.5%) whereas tinnitus duration and severity did not differ between groups. Electromagnetic hypersensitivity and tinnitus were independent risk factors for sleep disturbances. However, measures of individual EMF-exposure like e.g. cell phone use did not show any association with tinnitus. CONCLUSIONS: Our data indicate that tinnitus is associated with subjective electromagnetic hypersensitivity. An individual vulnerability probably due to an over activated cortical distress network seems to be responsible for, both, electromagnetic hypersensitivity and tinnitus. Hence, therapeutic efforts should focus on treatment strategies (e.g. cognitive behavioral therapy) aiming at normalizing this dysfunctional distress network

    The Distressed Brain: A Group Blind Source Separation Analysis on Tinnitus

    Get PDF
    Background: Tinnitus, the perception of a sound without an external sound source, can lead to variable amounts of distress. Methodology: In a group of tinnitus patients with variable amounts of tinnitus related distress, as measured by the Tinnitus Questionnaire (TQ), an electroencephalography (EEG) is performed, evaluating the patients ’ resting state electrical brain activity. This resting state electrical activity is compared with a control group and between patients with low (N = 30) and high distress (N = 25). The groups are homogeneous for tinnitus type, tinnitus duration or tinnitus laterality. A group blind source separation (BSS) analysis is performed using a large normative sample (N = 84), generating seven normative components to which high and low tinnitus patients are compared. A correlation analysis of the obtained normative components ’ relative power and distress is performed. Furthermore, the functional connectivity as reflected by lagged phase synchronization is analyzed between the brain areas defined by the components. Finally, a group BSS analysis on the Tinnitus group as a whole is performed. Conclusions: Tinnitus can be characterized by at least four BSS components, two of which are posterior cingulate based, one based on the subgenual anterior cingulate and one based on the parahippocampus. Only the subgenual component correlates with distress. When performed on a normative sample, group BSS reveals that distress is characterized by two anterior cingulate based components. Spectral analysis of these components demonstrates that distress in tinnitus is relate
    • …
    corecore