1 research outputs found
Generation of Explicit Knowledge from Empirical Data through Pruning of Trainable Neural Networks
This paper presents a generalized technology of extraction of explicit
knowledge from data. The main ideas are 1) maximal reduction of network
complexity (not only removal of neurons or synapses, but removal all the
unnecessary elements and signals and reduction of the complexity of elements),
2) using of adjustable and flexible pruning process (the pruning sequence
shouldn't be predetermined - the user should have a possibility to prune
network on his own way in order to achieve a desired network structure for the
purpose of extraction of rules of desired type and form), and 3) extraction of
rules not in predetermined but any desired form. Some considerations and notes
about network architecture and training process and applicability of currently
developed pruning techniques and rule extraction algorithms are discussed. This
technology, being developed by us for more than 10 years, allowed us to create
dozens of knowledge-based expert systems. In this paper we present a
generalized three-step technology of extraction of explicit knowledge from
empirical data.Comment: 9 pages, The talk was given at the IJCNN '99 (Washington DC, July
1999