13 research outputs found

    Original Article

    Get PDF
    99 cases were operated while we could not use antibiotics. The author traced X-ray photos on paper and measured areas of the peeled cavities with a planimeter. Results were as follows. 1) 66 cases had increasing stage and the rates were more than 30 %. 2) Cases with good developments showed larger original areas (50〜100cm^2) and smaller increasing rates (less than 30 %). 3) Also their X-ray photos showed coinciding or almost coinciding lines of the apices of lungs and the bases of cavities, but we had to take precautions against suppuration when they showed a horizontal line several days after operation. 4) Most of too high degree of adhesion or thickning of pleura did not show good results. When we found a cord which we must manage with some procedures by pneumolysis we must attend to suppuration too. 5)We ought to resect 4th or 5th rib more than 20 cm and 5th or 4th several cm supplementary. 6) As a method of constriction we commend the INVAGI.NATION method. 7) The author noticed in a considerable number of cases that the areas of cavities increased again after they kept long balanced stages

    Atherosclerosis V, Proceeding of the Fifth International Symposium, A.M. Gotto, L.C. Smith, B. Allen, Spring Verlag, 1979(BOOK REVIEW)

    Get PDF
    Antiviral effect of micafungin on three strains of human rhinoviruses. H1HeLa cells were infected with human rhinovirus type 14 (A), 21 (B), or 71 (C) (100 CCID50) and immediately treated with indicated concentrations of micafungin. Three days after compound treatment antiviral activity was determined by the reduction of cytopathic effect using MTT assay. Cell viability of DMSO-treated cells was set to 0 % and that of uninfected cells was set to 100 %. (TIF 100 kb

    Light-Tunable Polarity and Erasable Physisorption-Induced Memory Effect in Vertically Stacked InSe/SnS<sub>2</sub> Self-Powered Photodetector

    No full text
    van der Waals heterojunctions with tunable polarity are being actively explored for more Moore and more-than-Moore device applications, as they can greatly simplify circuit design. However, inadequate control over the multifunctional operational states is still a challenge in their development. Here, we show that a vertically stacked InSe/SnS2 van der Waals heterojunction exhibits type-II band alignment, and its polarity can be tuned by an external electric field and by the wavelength and intensity of an illuminated light source. Moreover, such SnS2/InSe diodes are self-powered broadband photodetectors with good performance. The self-powered performance can be further enhanced significantly with gas adsorption, and the device can be quickly restored to the state before gas injection using a gate voltage pulse. Our results suggest a way to achieve and design multiple functions in a single device with multifield coupling of light, electrical field, gas, or other external stimulants

    Inactivation of human DGAT2 by oxidative stress on cysteine residues

    No full text
    <div><p>Diacylglycerol acyltransferases (DGATs) have a crucial role in the biosynthesis of triacylglycerol (TG), the major storage form of metabolic energy in eukaryotic organisms. Even though DGAT2, one of two distinct DGATs, has a vital role in TG biosynthesis, little is known about the regulation of DGAT2 activity. In this study, we examined the role of cysteine and its oxidation in the enzymatic activity of human DGAT2 <i>in vitro</i>. Human DGAT2 activity was considerably inhibited not only by thiol-modifying reagents (NEM and IA) but also by ROS-related chemicals (H<sub>2</sub>O<sub>2</sub> and β-lapachone), while human DGAT1 and GPAT1 were little affected. Particularly, ROS-related chemicals concomitantly induced intermolecular disulfide crosslinking of human DGAT2. Both the oxidative inactivation and disulfide crosslinking were almost completely reversed by the treatment with DTT, a disulfide-reducing agent. These results clearly demonstrated the significant role of ROS-induced intermolecular crosslinking in the inactivation of human DGAT2 and also suggested DGAT2 as a redox-sensitive regulator in TG biosynthesis.</p></div

    Enhanced NO<sub>2</sub> Sensitivity of Vertically Stacked van der Waals Heterostructure Gas Sensor and Its Remarkable Electric and Mechanical Tunability

    No full text
    Nanodevices based on van der Waals heterostructures have been predicted, and shown, to have unprecedented operational principles and functionalities that hold promise for highly sensitive and selective gas sensors with rapid response times and minimal power consumption. In this study, we fabricated gas sensors based on vertical MoS2/WS2 van der Waals heterostructures and investigated their gas sensing capabilities. Compared with individual MoS2 or WS2 gas sensors, the MoS2/WS2 van der Waals heterostructure gas sensors are shown to have enhanced sensitivity, faster response times, rapid recovery, and a notable selectivity, especially toward NO2. In combination with a theoretical model, we show that it is important to take into account created trapped states (flat bands) induced by the adsorption of gas molecules, which capture charges and alter the inherent built-in potential of van der Waals heterostructure gas sensors. Additionally, we note that the performance of these MoS2/WS2 heterostructure gas sensors could be further enhanced using electrical gating and mechanical strain. Our findings highlight the importance of understanding the effects of altered built-in potentials arising from gas molecule adsorption induced flat bands, thus offering a way to enhance the gas sensing performance of van der Waals heterostructure gas sensors

    Susceptibility of human DGAT2 activity to cysteine-specific modifying reagents.

    No full text
    <p>(A) Membrane extracts from human DGAT2-overexpressing Sf9 insect cells were treated with indicated concentrations of NEM or IA. Human DGAT2 activity was measured by using the conventional extraction-based <i>in vitro</i> DGAT assay. The relative DGAT2 activity in percentage was calculated by setting the value from DMSO-treated sample to 100%. (B) Selective inhibitory effect of NEM on human DGAT2 activity compared to that on human DGAT1 and GPAT1. Membrane extracts from human DGAT2-, DGAT1-, or GPAT1-overexpressing Sf9 insect cells were treated with indicated concentrations of NEM or DMSO. Human DGAT1, DGAT2, and GPAT1 activity was measured by using the conventional extraction-based <i>in vitro</i> assays which are described in detail in the Materials and Methods section. The relative enzyme activity in percentage was calculated by setting the value from DMSO-treated sample to 100%. The mean values and standard deviations were determined from four independent assays.</p

    Multimeric complex of human DGAT2 formed by H<sub>2</sub>O<sub>2</sub>-induced disulfide crosslinking in human cells.

    No full text
    <p>Huh-7 cells were transfected with plasmid overexpressing human DGAT2 for 47 hours and further incubated with indicated concentrations of H<sub>2</sub>O<sub>2</sub> for 1 hour. Cell extracts were harvested in a way described in Materials and Methods section and subjected to Western blot analysis using anti-DGAT2 antibody (A). The amount of monomeric human DGAT2 proteins presented as redDGAT2 in (A) was quantified and the amount of relative redDGAT2 protein was calculated by setting the values from samples treated with PBS to 100% (B). The mean values and standard deviations were determined from three independent experiments. Asterisks indicate non-specific bands.</p

    Inhibitory effect of ROS and ROS generator on human DGAT2 catalytic activity.

    No full text
    <p>Membrane extracts from human DGAT2-overexpressing Sf9 insect cells were treated with indicated concentrations of H<sub>2</sub>O<sub>2</sub> (A) or β-lapachone (B) in the presence or absence of 20 mM DTT. Human DGAT2 activity was measured by using the conventional extraction-based <i>in vitro</i> assays which are described in detail in the Materials and Methods section. The activities of membrane extracts treated with PBS (instead of H<sub>2</sub>O<sub>2</sub>) or DMSO (instead of β-lapachone) in the absence of DTT were defined as 100%. The mean values and standard deviations were determined from four independent experiments.</p

    Multimeric complex of human DGAT2 formed by ROS-induced intermolecular disulfide crosslinking <i>in vitro</i>.

    No full text
    <p>Membrane extracts from human DGAT2-overexpressing Sf9 insect cells were treated with H<sub>2</sub>O<sub>2</sub> (A) or β-lapachone (B) in the presence or absence of 20 mM DTT and subjected to Western blot analysis using anti-DGAT2 antibody. The amount of monomeric human DGAT2 proteins presented as redDGAT2 in (A) and (B) was quantified and the amount of relative redDGAT2 protein was calculated by setting the values from samples treated with PBS (C) or DMSO (D) to 100%. Asterisk indicates a non-specific band.</p

    Tunable Exciton Dissociation and Luminescence Quantum Yield at a Wide Band Gap Nanocrystal/Quasi-Ordered Regioregular Polythiophene interface

    No full text
    A comprehensive understanding of the effect of polymer chain aggregation-induced molecular ordering and the resulting formation of lower excited energy structures in a conjugated polymer on exciton dissociation and recombination at the interface with a wide-bandgap semiconductor is provided through correlation between structural arrangement of the polymer chains and the consequent electrical and optoelectronic properties. A vertical diode-type photovoltaic test probe is combined with a field effect current modulating device and various spectroscopic techniques to isolate the interfacial properties from the bulk properties. Enhanced energy migration in the quasi-ordered (poly­(3-hexylthiophene)) (P3HT) film, processed through vibration-induced aggregation of polymer chains in solution state, is attributed to the presence of the aggregation-induced interchain species in which excitons are allowed to migrate through low barrier energy sites, enabling efficient iso-energetic charge transfer followed by the downhill energy transfer. We discovered that formation of nonemissive excitons that reduces the photoluminescence quantum yield in the P3HT film deactivates exciton dissociation at the donor (P3HT) close to the acceptor (ZnO) as well as in the P3HT far away from the ZnO. In other words, exciton deactivation in its film state arising from the quasi-ordered structural arrangement of polymer chains in solution is retained at the donor/acceptor interface as well as in the bulk P3HT. Effect of change in the highest occupied molecular orbital level and the resulting energy band bending at the P3HT/ZnO interface on exciton dissociation is also discussed in relation to the presence of vibration-induced aggregates in the P3HT film
    corecore