998 research outputs found

    The interaction of oxygen with the surface of CeO2–TiO2 mixed systems: an example of fully reversible surface-to-molecule electron transfer

    Get PDF
    The interaction of oxygen with the surface of CeO2-TiO2 mixed oxides prepared via sol gel was investigated by means of electron paramagnetic resonance (EPR). Upon admission of molecular oxygen onto the surface of the as prepared materials (which underwent final oxidative calcination) the formation of superoxide O-2(-) ions is observed without the need for preliminary annealing in a vacuum and consequent oxygen depletion. The superoxide species is symmetrically adsorbed ("side-on" structure) on the top of a Ce4+ ion. Surprisingly the electron transfer is fully reversible at room temperature having the typical behavior shown by molecular oxygen carriers, which, however, link to oxygen in a completely different manner ("end-on" structure). We suggest that the active sites are Ce3+ ions present in the stoichiometric cerium titanate which forms during the synthesis. The features of these Ce3+ ions must be different from those of the same ions formed in CeO2 by reductive treatments, which show a different reactivity to O-2. The observation reported here opens up innovative perspectives in the field of heterogeneous catalysis and in that of sensors as the total reversibility of the electron transfer is observed in a significant range of oxygen pressure

    Understanding the nature and location of hydroxyl groups on hydrated titania nanoparticles

    Full text link
    TiO2 nanoparticles (NPs) are intensively studied and widely used due to their huge potential in numerous applications involving their interaction with ultraviolet light (e.g. photocatalysis, sunscreens). Typically, these NPs are in water-containing environments and thus tend to be hydrated. As such, there is a growing need to better understand the physicochemical properties of hydrated TiO2 NPs in order to improve their performance in photochemical applications (e.g. photocatalytic water splitting) and to minimise their environmental impact (e.g. potential biotoxicity). To help address the need for reliable and detailed data on how nano-titania interacts with water, we present a systematic experimental and theoretical study of surface hydroxyl (OH) groups on photoactive anatase TiO2 NPs. Employing well-defined experimentally synthesised NPs and detailed realistic NP models, we obtain the measured and computed infrared spectra of the surface hydroxyls, respectively. By comparing the experimental and theoretical spectra we are able to identify the type and location of different OH groups in these NP systems. Specifically, our study allows us to provide unprecedented and detailed information about the coverage-dependent distribution of hydroxyl groups on the surface of experimental titania NPs, the degree of their H-bonding interactions and their associated assigned vibrational modes. Our work promises to lead to new routes for developing new and safe nanotechnologies based on hydrated TiO2 NPs

    Nearly free silanols drive the interaction of crystalline silica polymorphs with membranes: Implications for mineral toxicity

    Get PDF
    Crystalline silica (CS) is a well-known hazardous material that causes severe diseases including silicosis, lung cancer, and autoimmune diseases. However, the hazard associated to crystalline silica is extremely variable and depends on some specific characteristics, including crystal structure and surface chemistry. The crystalline silica polymorphs share the SiO(2) stoichiometry and differentiate for crystal structure. The different crystal lattices in turn expose differently ordered hydroxyl groups at the crystal surface, i.e., the silanols. The nearly free silanols (NFS), a specific population of weakly interacting silanols, have been recently advanced as the key surface feature that governs recognition mechanisms between quartz and cell membrane, initiating toxicity. We showed here that the nearly free silanols occur on the other crystalline silica polymorphs and take part in the molecular interactions with biomembranes. A set of crystalline silica polymorphs, including quartz, cristobalite, tridymite, coesite, and stishovite, was physico-chemically characterized and the membranolytic activity was assessed using red blood cells as model membranes. Infrared spectroscopy in highly controlled conditions was used to profile the surface silanol topochemistry and the occurrence of surface nearly free silanols on crystalline silica polymorphs. All crystalline silica polymorphs, but stishovite were membranolytic. Notably, pristine stishovite did not exhibited surface nearly free silanols. The topochemistry of surface silanols was modulated by thermal treatments, and we showed that the occurrence of nearly free silanols paralleled the membranolytic activity for the crystalline silica polymorphs. These results provide a comprehensive understanding of the structure-activity relationship between nearly free silanols and membranolytic activity of crystalline silica polymorphs, offering a possible clue for interpreting the molecular mechanisms associated with silica hazard and bio-minero-chemical interfacial phenomena, including prebiotic chemistry
    corecore