9 research outputs found

    Immunoglobulin heavy variable (IgHV) gene mutation and micro-RNA expression in Burkitt\u2019s lymphoma at Moi Teaching and Referral Hospital in Western Kenya

    Get PDF
    Introduction: Burkitt\u2019s lymphoma (BL) is a virus associated childhood B-cell cancer common in Eastern Africa. Continued survival of B-cells in germinal centres depend on expression of high affinity immunoglobulins (Ig) to complementary antigens by somatic hypermutation of Ig genes. Cellular microRNAs, non-coding RNAs have been reported to play role in cell cycle regulation. Both viral antigen dependent mutation and micro-RNA expression maybe involved in BL pathogenesis. Objective: To describe immunoglobulin heavy variable (IgHV) rearrangement and micro-RNA expressions in BL tumours. Methods: Genomic DNA were extracted and purified from BL tissue blocks at Moi Teaching and Referral Hospital, before amplification using IgHV consensus primers and sequencing. The sequences were then aligned with germline alleles in IMGT/ V-QUEST\uae database. Total RNA extracted from tissue blocks and cell lines were used to determine relative expression of hsamiR-34a and hsa-miR-127. Results: In all tumours, allele alignment scores and number of mutations range were 89.2-93.2%, 15-24 respectively. The range of IgHV amino acid changes were higher in EBER-1+ (15-25) than EBER-1- (9-15). In MYC+ tumours, the relative expression were: hsa-miR-127(2.09);hsa-miR-34a (2.8) and MYC- hsa-miR-127 (1.2), hsa-miR-34a (1.0). Conclusion: B-cell in BL contained somatic mutated IgHV gene and upregulated cellular microRNAs with possible pathogenetic role(s)

    A Cross-Sectional Survey on Knowledge and Perceptions of Health Risks Associated with Arsenic and Mercury Contamination from Artisanal Gold mining in Tanzania.

    Get PDF
    An estimated 0.5 to 1.5 million informal miners, of whom 30-50% are women, rely on artisanal mining for their livelihood in Tanzania. Mercury, used in the processing gold ore, and arsenic, which is a constituent of some ores, are common occupational exposures that frequently result in widespread environmental contamination. Frequently, the mining activities are conducted haphazardly without regard for environmental, occupational, or community exposure. The primary objective of this study was to assess community risk knowledge and perception of potential mercury and arsenic toxicity and/or exposure from artisanal gold mining in Rwamagasa in northwestern Tanzania. A cross-sectional survey of respondents in five sub-villages in the Rwamagasa Village located in Geita District in northwestern Tanzania near Lake Victoria was conducted. This area has a history of artisanal gold mining and many of the population continue to work as miners. Using a clustered random selection approach for recruitment, a total of 160 individuals over 18 years of age completed a structured interview. The interviews revealed wide variations in knowledge and risk perceptions concerning mercury and arsenic exposure, with 40.6% (n=65) and 89.4% (n=143) not aware of the health effects of mercury and arsenic exposure respectively. Males were significantly more knowledgeable (n=59, 36.9%) than females (n=36, 22.5%) with regard to mercury (x²=3.99, p<0.05). An individual's occupation category was associated with level of knowledge (x²=22.82, p=<0.001). Individuals involved in mining (n=63, 73.2%) were more knowledgeable about the negative health effects of mercury than individuals in other occupations. Of the few individuals (n=17, 10.6%) who knew about arsenic toxicity, the majority (n=10, 58.8%) were miners. The knowledge of individuals living in Rwamagasa, Tanzania, an area with a history of artisanal gold mining, varied widely with regard to the health hazards of mercury and arsenic. In these communities there was limited awareness of the threats to health associated with exposure to mercury and arsenic. This lack of knowledge, combined with minimal environmental monitoring and controlled waste management practices, highlights the need for health education, surveillance, and policy changes

    Community Development of Interprofessional Practice in Kenya

    No full text

    Radionuclides and heavy metals in Borovac, Southern Serbia

    No full text
    Background, aim, and scope The paper presents the complex approach to the assessment of the state of the environment in Southern Serbia, surroundings of Bujanovac, the region which is of great concern as being exposed to contamination by depleted uranium (DU) ammunition during the North Atlantic Treaty Organization (NATO) attacks in 1999. It includes studies on concentrations of radionuclides and heavy metals in different environmental samples 5 years after the military actions. Materials and methods In October 2004, samples of soil, grass, lichen, moss, honey, and water were collected at two sites, in the immediate vicinity of the targeted area and 5 km away from it. Radionuclide (Be-7, K-40, Cs-137, Pb-210, Ra-226, Th-232, U-235, U-238) activities in solid samples were determined by standard gamma spectrometry and total alpha and beta activity in water was determined by proportional alpha-beta counting. Concentrations of 35 elements were determined in the samples of soil, moss, grass, and lichen by instrumental neutron activation analysis (INAA). Results The results are discussed in the context of a possible contamination by DU that reached the environment during the attacks as well as in the context of an environmental pollution by radionuclides and heavy metals in Southern Serbia. The results are compared to the state of environment in the region and other parts of the country both prior to and following the attacks. Discussion This is the first comprehensive study of the contents of radionuclides and heavy metals in Southern Serbia and consequently highly important for the assessment of the state of environment in this part of the country concerning possible effects of DU ammunition on the environment, as well as anthropogenic source of pollution by radionuclides and heavy metals and other elements. Also, the highly sensitive method of INAA was used for the first time to analyze the environmental samples from this area. Conclusions The results of the study of radionuclides in the samples of soils, leaves, grass, moss, lichen, honey, and water in Southern Serbia (Bujanovac) gave no evidence of the DU contamination of the environment 5 years after the military actions in 1999. Activities of radionuclides in soils were within the range of the values obtained in the other parts of the country and within the global average. The ratio of uranium isotopes confirmed the natural origin of uranium. In general, concentrations of heavy metals in the samples of soils, plant leaves, mosses, and lichen are found to be less or in the lower range of values found in other parts of the country, in spite of the differences in plant and moss species or soil characteristics. Possible sources of heavy metal contamination were identified as a power coal plant in the vicinity of the sampling sites and wood and waste burning processes. Recommendations and perspectives The collected data should provide a base for the health risk assessments on animals and humans in the near future. It should be emphasized that the sampling was carried out 5 years after the military action and that the number of samples was limited; therefore, the conclusions should be accepted only as observed tendencies and a detailed study should be recommended in the future
    corecore