399 research outputs found
Optimization of miRNA-seq data preprocessing.
The past two decades of microRNA (miRNA) research has solidified the role of these small non-coding RNAs as key regulators of many biological processes and promising biomarkers for disease. The concurrent development in high-throughput profiling technology has further advanced our understanding of the impact of their dysregulation on a global scale. Currently, next-generation sequencing is the platform of choice for the discovery and quantification of miRNAs. Despite this, there is no clear consensus on how the data should be preprocessed before conducting downstream analyses. Often overlooked, data preprocessing is an essential step in data analysis: the presence of unreliable features and noise can affect the conclusions drawn from downstream analyses. Using a spike-in dilution study, we evaluated the effects of several general-purpose aligners (BWA, Bowtie, Bowtie 2 and Novoalign), and normalization methods (counts-per-million, total count scaling, upper quartile scaling, Trimmed Mean of M, DESeq, linear regression, cyclic loess and quantile) with respect to the final miRNA count data distribution, variance, bias and accuracy of differential expression analysis. We make practical recommendations on the optimal preprocessing methods for the extraction and interpretation of miRNA count data from small RNA-sequencing experiments
Activation of Hepatocyte Growth Factor-Met Autocrine Loop Enhances Tumorigenicity in a Human Lung Adenocarcinoma Cell Line
AbstractHepatocyte growth factor (HGF) is a multifunctional cytokine with effects on the proliferation, motility, and differentiation of cells that express its receptor Met. The co-expression of HGF and Met is common among nonsmall-cell lung cancers, especially adenocarcinoma. However, the biologic consequences of this putative HGF-Met autocrine signaling remain speculative. We have used retroviral gene transduction technique to express high levels of HGF in the NCI-H358 lung adenocarcinoma cells that have functionally active cell surface Met receptor. The activation of autocrine HGFMet signaling was confirmed by the induction of spontaneous cell scattering activity. Compared to the parent and control cells transduced with the retroviral vector alone, HGF overexpressing H358 cells show enhanced capacity to colonize soft agar medium and to form xenograft tumors when implanted in the subcutaneous tissue of immune-deficient mice. These effects were not accompanied by changes in their growth rate in monolayer culture condition, or in the expression of vascular endothelial growth factor. The tumors formed by HGF overexpressing cells also showed more prominent glandular cell arrangement and functional activity. This report provides the direct in vivo evidence that autocrine HGF-Met signaling plays significant roles in the growth and differentiation of human lung adenocarcinoma cells
Modified gateway system for double shRNA expression and Cre/lox based gene expression
<p>Abstract</p> <p>Background</p> <p>The growing need for functional studies of genes has set the stage for the development of versatile tools for genetic manipulations.</p> <p>Results</p> <p>Aiming to provide tools for high throughput analysis of gene functions, we have developed a modified short hairpin RNA (shRNA) and gene expression system based on Gateway Technology. The system contains a series of entry and destination vectors that enables easy transfer of shRNA or cDNA into lentiviral expression systems with a variety of selection or marker genes (i.e. puromycin, hygromycin, green fluorescent protein-EGFP, yellow fluorescent protein-YFP and red fluorescent protein-dsRed2). Our shRNA entry vector pENTR.hU6.hH1 containing two tandem human shRNA expression promoters, H1 and U6, was capable of co-expressing two shRNA sequences simultaneously. The entry vector for gene overexpression, pENTR.CMV.ON was constructed to contain CMV promoter with a multiple cloning site flanked by loxP sites allowing for subsequent Cre/lox recombination. Both shRNA and cDNA expression vectors also contained attL sites necessary for recombination with attR sites in our destination expression vectors. As proof of principle we demonstrate the functionality and efficiency of this system by testing expression of several cDNA and shRNA sequences in a number of cell lines.</p> <p>Conclusion</p> <p>Our system is a valuable addition to already existing library of Gateway based vectors and can be an essential tool for many aspects of gene functional studies.</p
Differential utilization of NF-kappaB RELA and RELB in response to extracellular versus intracellular polyIC stimulation in HT1080 cells
Abstract
Background
Pattern recognition receptors (PRRs) for double-stranded RNA (dsRNA) are components of innate immunity that recognize the presence of viral infection and initiate efficient defense mechanisms. In addition to previously well-characterized signaling pathways that are mediated by PKR and TLR3, new intracellular dsRNA sensors, that are members of CARD and DExD/H box helicase family, have been identified. However, the molecular mechanisms involved in the signaling pathways mediated by these new dsRNA sensors have not been extensively characterized.
Results
Here, we studied an intracellular dsRNA pathway in the human fibrosarcoma cell line HT1080, which is distinct from the TLR3-mediated extracellular dsRNA pathway. Particularly, the NF-kB subunits RELA and RELB were differentially utilized by these two dsRNA signaling pathways. In TLR3-mediated dsRNA signaling, siRNA knock-down studies suggested a limited role for RELA on regulation of interferon beta and other cytokines whereas RELB appeared to have a negative regulatory role. By contrast, intracellular dsRNA signaling was dependent on RELA, but not RELB.
Conclusions
Our study suggests that extracellular and intracellular dsRNA signaling pathways may utilize different NF-kB members, and particularly the differential utilization of RELB may be a key mechanism for powerful inductions of NF-kB regulated genes in the intracellular dsRNA signaling pathway
Ancillary Testing in Lung Cancer Diagnosis
The pathologic diagnosis of lung cancer historically has relied primarily on morphologic features of tumors in histologic sections. With the emergence of new targeted therapies, the pathologist is called upon increasingly to provide not only accurate typing of lung cancers, but also to provide prognostic and predictive information, based on a growing number of ancillary tests, that may have significant impact on patient management. This review provides an overview of ancillary tests currently used in the pathologic diagnosis of lung cancer, with a focus on immunohistochemistry and molecular diagnostics
Exploiting the noise: improving biomarkers with ensembles of data analysis methodologies.
BackgroundThe advent of personalized medicine requires robust, reproducible biomarkers that indicate which treatment will maximize therapeutic benefit while minimizing side effects and costs. Numerous molecular signatures have been developed over the past decade to fill this need, but their validation and up-take into clinical settings has been poor. Here, we investigate the technical reasons underlying reported failures in biomarker validation for non-small cell lung cancer (NSCLC).MethodsWe evaluated two published prognostic multi-gene biomarkers for NSCLC in an independent 442-patient dataset. We then systematically assessed how technical factors influenced validation success.ResultsBoth biomarkers validated successfully (biomarker #1: hazard ratio (HR) 1.63, 95% confidence interval (CI) 1.21 to 2.19, P = 0.001; biomarker #2: HR 1.42, 95% CI 1.03 to 1.96, P = 0.030). Further, despite being underpowered for stage-specific analyses, both biomarkers successfully stratified stage II patients and biomarker #1 also stratified stage IB patients. We then systematically evaluated reasons for reported validation failures and find they can be directly attributed to technical challenges in data analysis. By examining 24 separate pre-processing techniques we show that minor alterations in pre-processing can change a successful prognostic biomarker (HR 1.85, 95% CI 1.37 to 2.50, P < 0.001) into one indistinguishable from random chance (HR 1.15, 95% CI 0.86 to 1.54, P = 0.348). Finally, we develop a new method, based on ensembles of analysis methodologies, to exploit this technical variability to improve biomarker robustness and to provide an independent confidence metric.ConclusionsBiomarkers comprise a fundamental component of personalized medicine. We first validated two NSCLC prognostic biomarkers in an independent patient cohort. Power analyses demonstrate that even this large, 442-patient cohort is under-powered for stage-specific analyses. We then use these results to discover an unexpected sensitivity of validation to subtle data analysis decisions. Finally, we develop a novel algorithmic approach to exploit this sensitivity to improve biomarker robustness
Phenotypic and karyotypic changes induced in cultured rat hepatic epithelial cells that express the "oval" cell phenotype by exposure to N-methyl-N'-nitro-N-nitrosoguanidine.
A diploid population of cultured rat hepatic epithelial cells that expresses the "oval" cell phenotype was exposed briefly and repetitively to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), and the effect on more than 20 phenotypic properties was evaluated during the neoplastic transformation of the population. MNNG treatments of this hepatic epithelial cell population resulted in a progressively increasing phenotypic alteration and heterogeneity including changes in specific activities of several cellular enzymes and expression of isozymes, synthetic functions, and various in vitro growth properties. Changes in phenotypic expression were clustered episodically and were associated with major karyotypic changes. The development of increasing phenotypic heterogeneity preceding and accompanying tumorigenicity in cultured liver epithelial cells in vitro and the specific phenotypes that occur resemble superficially the pattern of phenotypic changes that occur in hepatocytes during chemical hepatocarcinogenesis in vivo. The results of this study provide the basis for future investigations to further elucidate the mechanistic and linkage relationship between specific pretumorigenic and paratumorigenic phenotypes and tumorigenicity
Large fragment Bst DNA polymerase for whole genome amplification of DNA from formalin-fixed paraffin-embedded tissues
BACKGROUND: Formalin-fixed paraffin-embedded (FFPE) tissues represent the largest source of archival biological material available for genomic studies of human cancer. Therefore, it is desirable to develop methods that enable whole genome amplification (WGA) using DNA extracted from FFPE tissues. Multiple-strand Displacement Amplification (MDA) is an isothermal method for WGA that uses the large fragment of Bst DNA polymerase. To date, MDA has been feasible only for genomic DNA isolated from fresh or snap-frozen tissue, and yields a representational distortion of less than threefold. RESULTS: We amplified genomic DNA of five FFPE samples of normal human lung tissue with the large fragment of Bst DNA polymerase. Using quantitative PCR, the copy number of 7 genes was evaluated in both amplified and original DNA samples. Four neuroblastoma xenograft samples derived from cell lines with known N-myc gene copy number were also evaluated, as were 7 samples of non-small cell lung cancer (NSCLC) tumors with known Skp2 gene amplification. In addition, we compared the array comparative genomic hybridization (CGH)-based genome profiles of two NSCLC samples before and after Bst MDA. A median 990-fold amplification of DNA was achieved. The DNA amplification products had a very high molecular weight (> 23 Kb). When the gene content of the amplified samples was compared to that of the original samples, the representational distortion was limited to threefold. Array CGH genome profiles of amplified and non-amplified FFPE DNA were similar. CONCLUSION: Large fragment Bst DNA polymerase is suitable for WGA of DNA extracted from FFPE tissues, with an expected maximal representational distortion of threefold. Amplified DNA may be used for the detection of gene copy number changes by quantitative realtime PCR and genome profiling by array CGH
Quantitative image analysis of immunohistochemical stains using a CMYK color model
BACKGROUND: Computer image analysis techniques have decreased effects of observer biases, and increased the sensitivity and the throughput of immunohistochemistry (IHC) as a tissue-based procedure for the evaluation of diseases. METHODS: We adapted a Cyan/Magenta/Yellow/Key (CMYK) model for automated computer image analysis to quantify IHC stains in hematoxylin counterstained histological sections. RESULTS: The spectral characteristics of the chromogens AEC, DAB and NovaRed as well as the counterstain hematoxylin were first determined using CMYK, Red/Green/Blue (RGB), normalized RGB and Hue/Saturation/Lightness (HSL) color models. The contrast of chromogen intensities on a 0–255 scale (24-bit image file) as well as compared to the hematoxylin counterstain was greatest using the Yellow channel of a CMYK color model, suggesting an improved sensitivity for IHC evaluation compared to other color models. An increase in activated STAT3 levels due to growth factor stimulation, quantified using the Yellow channel image analysis was associated with an increase detected by Western blotting. Two clinical image data sets were used to compare the Yellow channel automated method with observer-dependent methods. First, a quantification of DAB-labeled carbonic anhydrase IX hypoxia marker in 414 sections obtained from 138 biopsies of cervical carcinoma showed strong association between Yellow channel and positive color selection results. Second, a linear relationship was also demonstrated between Yellow intensity and visual scoring for NovaRed-labeled epidermal growth factor receptor in 256 non-small cell lung cancer biopsies. CONCLUSION: The Yellow channel image analysis method based on a CMYK color model is independent of observer biases for threshold and positive color selection, applicable to different chromogens, tolerant of hematoxylin, sensitive to small changes in IHC intensity and is applicable to simple automation procedures. These characteristics are advantageous for both basic as well as clinical research in an unbiased, reproducible and high throughput evaluation of IHC intensity
- …