9,406 research outputs found

    Higgs amplitude mode in massless Dirac fermion systems

    Full text link
    The Higgs amplitude mode in superconductors is the condensed matter analogy of Higgs bosons in particle physics. We investigate the time evolution of Higgs amplitude mode in massless Dirac systems, induced by a weak quench of an attractive interaction. We find that the Higgs amplitude mode in the half-filling honeycomb lattice has a logarithmic decaying behaviour, qualitatively different from the 1/t1/\sqrt{t} decay in the normal superconductors. Our study is also extended to the doped cases in honeycomb lattice. As for the 3D Dirac semimetal at half filling, we obtain an undamped oscillation of the amplitude mode. Our finding is not only an important supplement to the previous theoretical studies on normal fermion systems, but also provide an experimental signature to characterize the superconductivity in 2D or 3D Dirac systems.Comment: 6 pages, 8 figure

    Bounds for eigenvalue ratios of the Laplacian

    Full text link
    For a bounded domain Ω\Omega with a piecewise smooth boundary in an nn-dimensional Euclidean space Rn\mathbf{R}^{n}, we study eigenvalues of the Dirichlet eigenvalue problem of the Laplacian. First we give a general inequality for eigenvalues of the Laplacian. As an application, we study lower order eigenvalues of the Laplacian and derive the ratios of lower order eigenvalues of the Laplacian.Comment: 14 page

    Optimal measurements to access classical correlations of two-qubit states

    Full text link
    We analyze the optimal measurements accessing classical correlations in arbitrary two-qubit states. Two-qubit states can be transformed into the canonical forms via local unitary operations. For the canonical forms, we investigate the probability distribution of the optimal measurements. The probability distribution of the optimal measurement is found to be centralized in the vicinity of a specific von Neumann measurement, which we call the maximal-correlation-direction measurement (MCDM). We prove that for the states with zero-discord and maximally mixed marginals, the MCDM is the very optimal measurement. Furthermore, we give an upper bound of quantum discord based on the MCDM, and investigate its performance for approximating the quantum discord.Comment: 8 pages, 3 figures, version accepted by Phys. Rev.
    • …
    corecore