59 research outputs found

    <i>ortho-</i>Directing Chromium Arene Complexes as Efficient Mediators for Enantiospecific C(sp<sup>2</sup>)–C(sp<sup>3</sup>) Cross-Coupling Reactions

    Get PDF
    <p>Supplemental material, supplementary_table_6 for HDAC3-mediated silencing of miR-451 decreases chemosensitivity of patients with metastatic castration-resistant prostate cancer by targeting NEDD9 by Dong-qin Chen, Chen Yu, Xue-feng Zhang, Zhong-fang Liu, Rui Wang, Min Jiang, Hao Chen, Feng Yan, Min Tao, Long-bang Chen, Hong Zhu and Ji-feng Feng in Therapeutic Advances in Medical Oncology</p

    Additional file 1: Table S1. of MicroRNA profiles reveal female allotetraploid hybrid fertility

    No full text
    Data statistics of samples. Table S2. Classify annotation of clean reads. Table S3. Actual reads counts of miRNAs in different samples derived from sequencing. Table S4. Statistic of correlation by pairing comparision. Table S5. Differential expressed miRNAs and change fold. Table S6. Function annotation and classification of genes targeted by differential expressed miRNAs. Table S7. Function classfication of targeted genes of differential expressed miRNAs with KEGG pathway database. (XLS 248 kb

    Additional file 2: Figure S1. of MicroRNA profiles reveal female allotetraploid hybrid fertility

    No full text
    Correlation analysis of biological repeats between the RCC and 4nAT groups. (DOC 81 kb

    Supplemental Material - Over-Expression of ARID3B Suppresses Tumor Progression and Predicts Better Prognosis in Patients With Gastric Cancer

    No full text
    Supplemental Material for Over-Expression of ARID3B Suppresses Tumor Progression and Predicts Better Prognosis in Patients With Gastric Cancer by Xunlei Zhang, Xinyue Qiu, Wenjing Zhao, Li Song, Xingsong Zhang, Lei Yang, and Min Tao in Cancer Control.</p

    General Synthesis of <i>N</i>‑CF<sub>3</sub> Heteroaryl Amides via Successive Fluorination and Acylation of Sterically Hindered Isothiocyanates

    No full text
    We report the one-pot synthesis of N-CF3 heteroaryl amides (NTFMHA) from heteroaryl carboxylic acids and sterically hindered isothiocyanates, including various amino acid analogues, in the presence of AgF. The key to this reaction is the utilization of free heteroaryl acyl chlorides, rather than their corresponding hydrochloride salts. This method represents a complementary method of our previous work and enables modification to a variety of previously inaccessible structures, including α-tertiary amines and N-CF3-modified pharmaceuticals

    Table_1_Cloning, distribution, and effects of growth regulation of MC3R and MC4R in red crucian carp (Carassius auratus red var.).docx

    No full text
    BackgroundMelanocortin-3 and -4 receptors (MC3R and MC4R), G protein-coupled receptors, play vital roles in the regulation of energy homeostasis. To understand the functions of mc3r and mc4r in the energy homeostasis of red crucian carp (Carassius auratus red var., RCC), we cloned mc3r and mc4r, analyzed the tissue expression and localization of the genes, and investigated the effects of knockout of mc3r (mc3r+/-) and mc4r (mc4r+/-) in RCC. ResultsThe full-length cDNAs of RCC mc3r and mc4r were 1459 base pairs (bp) and 1894 bp, respectively. qRT-PCR indicated that mc3r and mc4r were profusely expressed in the brain, but lower expressed in the periphery tissues. ISH revealed that mc3r and mc4r were located in NPP, NPO, NAPv, NSC, NAT, NRL, NLTl, and NLTp of the brain, suggesting that mc3r and mc4r might regulate many physiological and behavioral aspects in RCC. To further verify the roles of mc3r and mc4r in energy homeostasis, the mc3r+/- and mc4r+/- fish were obtained by the CRISPR/Cas9 system. The average body weights, total lengths, body depths, and food intake of mc4r+/- fish were significantly higher than those of mc3r+/- and the normal wild-type (WT) fish, but there was no difference between the mc3r+/- and WT fish, indicating that the RCC phenotype and food intake were mainly influenced by mc4r but not mc3r. Interestingly, mc4r+/- fish displayed more visceral fat mass than mc3r+/- and WT fish, and mc3r+/- fish also exhibited slightly more visceral fat mass compared to WT. RNA-seq of the liver and muscle revealed that a large number of differentially expressed genes (DEGs) differed in WT vs. mc3r+/-, WT vs. mc4r+/-, and mc3r+/- vs. mc4r+/-, mainly related to lipid, glucose, and energy metabolism. The KEGG enrichment analysis revealed that DEGs were mainly enriched in pathways such as steroid biosynthesis, fatty acid metabolism, fatty acid biosynthesis, glycolysis/gluconeogenesis, wnt signaling pathway, PPAR signaling pathway, and MAPK signaling pathway, thereby affecting lipid accumulation and growth. ConclusionIn conclusion, these results will assist in the further investigation of the molecular mechanisms in which MC3R and MC4R were involved in the regulation of energy homeostasis in fish.</p

    Image_1_Cloning, distribution, and effects of growth regulation of MC3R and MC4R in red crucian carp (Carassius auratus red var.).jpeg

    No full text
    BackgroundMelanocortin-3 and -4 receptors (MC3R and MC4R), G protein-coupled receptors, play vital roles in the regulation of energy homeostasis. To understand the functions of mc3r and mc4r in the energy homeostasis of red crucian carp (Carassius auratus red var., RCC), we cloned mc3r and mc4r, analyzed the tissue expression and localization of the genes, and investigated the effects of knockout of mc3r (mc3r+/-) and mc4r (mc4r+/-) in RCC. ResultsThe full-length cDNAs of RCC mc3r and mc4r were 1459 base pairs (bp) and 1894 bp, respectively. qRT-PCR indicated that mc3r and mc4r were profusely expressed in the brain, but lower expressed in the periphery tissues. ISH revealed that mc3r and mc4r were located in NPP, NPO, NAPv, NSC, NAT, NRL, NLTl, and NLTp of the brain, suggesting that mc3r and mc4r might regulate many physiological and behavioral aspects in RCC. To further verify the roles of mc3r and mc4r in energy homeostasis, the mc3r+/- and mc4r+/- fish were obtained by the CRISPR/Cas9 system. The average body weights, total lengths, body depths, and food intake of mc4r+/- fish were significantly higher than those of mc3r+/- and the normal wild-type (WT) fish, but there was no difference between the mc3r+/- and WT fish, indicating that the RCC phenotype and food intake were mainly influenced by mc4r but not mc3r. Interestingly, mc4r+/- fish displayed more visceral fat mass than mc3r+/- and WT fish, and mc3r+/- fish also exhibited slightly more visceral fat mass compared to WT. RNA-seq of the liver and muscle revealed that a large number of differentially expressed genes (DEGs) differed in WT vs. mc3r+/-, WT vs. mc4r+/-, and mc3r+/- vs. mc4r+/-, mainly related to lipid, glucose, and energy metabolism. The KEGG enrichment analysis revealed that DEGs were mainly enriched in pathways such as steroid biosynthesis, fatty acid metabolism, fatty acid biosynthesis, glycolysis/gluconeogenesis, wnt signaling pathway, PPAR signaling pathway, and MAPK signaling pathway, thereby affecting lipid accumulation and growth. ConclusionIn conclusion, these results will assist in the further investigation of the molecular mechanisms in which MC3R and MC4R were involved in the regulation of energy homeostasis in fish.</p

    Image_2_Cloning, distribution, and effects of growth regulation of MC3R and MC4R in red crucian carp (Carassius auratus red var.).jpeg

    No full text
    BackgroundMelanocortin-3 and -4 receptors (MC3R and MC4R), G protein-coupled receptors, play vital roles in the regulation of energy homeostasis. To understand the functions of mc3r and mc4r in the energy homeostasis of red crucian carp (Carassius auratus red var., RCC), we cloned mc3r and mc4r, analyzed the tissue expression and localization of the genes, and investigated the effects of knockout of mc3r (mc3r+/-) and mc4r (mc4r+/-) in RCC. ResultsThe full-length cDNAs of RCC mc3r and mc4r were 1459 base pairs (bp) and 1894 bp, respectively. qRT-PCR indicated that mc3r and mc4r were profusely expressed in the brain, but lower expressed in the periphery tissues. ISH revealed that mc3r and mc4r were located in NPP, NPO, NAPv, NSC, NAT, NRL, NLTl, and NLTp of the brain, suggesting that mc3r and mc4r might regulate many physiological and behavioral aspects in RCC. To further verify the roles of mc3r and mc4r in energy homeostasis, the mc3r+/- and mc4r+/- fish were obtained by the CRISPR/Cas9 system. The average body weights, total lengths, body depths, and food intake of mc4r+/- fish were significantly higher than those of mc3r+/- and the normal wild-type (WT) fish, but there was no difference between the mc3r+/- and WT fish, indicating that the RCC phenotype and food intake were mainly influenced by mc4r but not mc3r. Interestingly, mc4r+/- fish displayed more visceral fat mass than mc3r+/- and WT fish, and mc3r+/- fish also exhibited slightly more visceral fat mass compared to WT. RNA-seq of the liver and muscle revealed that a large number of differentially expressed genes (DEGs) differed in WT vs. mc3r+/-, WT vs. mc4r+/-, and mc3r+/- vs. mc4r+/-, mainly related to lipid, glucose, and energy metabolism. The KEGG enrichment analysis revealed that DEGs were mainly enriched in pathways such as steroid biosynthesis, fatty acid metabolism, fatty acid biosynthesis, glycolysis/gluconeogenesis, wnt signaling pathway, PPAR signaling pathway, and MAPK signaling pathway, thereby affecting lipid accumulation and growth. ConclusionIn conclusion, these results will assist in the further investigation of the molecular mechanisms in which MC3R and MC4R were involved in the regulation of energy homeostasis in fish.</p

    The relation between NBSS parameter <i>c</i> and TP, fish yield and cyanobacterial biomass.

    No full text
    <p>Name of the abbreviation of types of lakes are as denoted in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0076378#pone-0076378-g005" target="_blank">Figure 5</a>. Lines indicate significant regressions (regression p<0.05).</p

    Zooplankton normalized biomass-size spectra (NBSS) for three types of lakes.

    No full text
    <p>A, the Type 1 lakes, functioned as natural fishing; B, the Type 2 lakes, which densely stocked with phytoplanktivorous fishes; C, theType 3 lakes, which had the risked to suffer cyanobacterial bloom.</p
    corecore