122 research outputs found

    Updating the Born rule

    Full text link
    Despite the tremendous empirical success of quantum theory there is still widespread disagreement about what it can tell us about the nature of the world. A central question is whether the theory is about our knowledge of reality, or a direct statement about reality itself. Regardless of their stance on this question, current interpretations of quantum theory regard the Born rule as fundamental and add an independent state-update (or "collapse") rule to describe how quantum states change upon measurement. In this paper we present an alternative perspective and derive a probability rule that subsumes both the Born rule and the collapse rule. We show that this more fundamental probability rule can provide a rigorous foundation for informational, or "knowledge-based", interpretations of quantum theory.Comment: 6+2 pages; 3 figure

    Communicating continuous quantum variables between different Lorentz frames

    Full text link
    We show how to communicate Heisenberg-limited continuous (quantum) variables between Alice and Bob in the case where they occupy two inertial reference frames that differ by an unknown Lorentz boost. There are two effects that need to be overcome: the Doppler shift and the absence of synchronized clocks. Furthermore, we show how Alice and Bob can share Doppler-invariant entanglement, and we demonstrate that the protocol is robust under photon loss.Comment: 4 pages, 1 figur

    Heuristic for estimation of multiqubit genuine multipartite entanglement

    Full text link
    For every N-qubit density matrix written in the computational basis, an associated "X-density matrix" can be obtained by vanishing all entries out of the main- and anti-diagonals. It is very simple to compute the genuine multipartite (GM) concurrence of this associated N-qubit X-state, which, moreover, lower bounds the GM-concurrence of the original (non-X) state. In this paper, we rely on these facts to introduce and benchmark a heuristic for estimating the GM-concurrence of an arbitrary multiqubit mixed state. By explicitly considering two classes of mixed states, we illustrate that our estimates are usually very close to the standard lower bound on the GM-concurrence, being significantly easier to compute. In addition, while evaluating the performance of our proposed heuristic, we provide the first characterization of GM-entanglement in the steady states of the driven Dicke model at zero temperature.Comment: 19 pages, 5 figure

    Characterizing GHZ Correlations in Nondegenerate Parametric Oscillation via Phase Measurements

    Get PDF
    We present a potential realization of the Greenberger, Horne and Zeilinger ALL or NOTHING contradiction of quantum mechanics with local realism using phase measurement techniques in a simple photon number triplet. Such a triplet could be generated using nondegenerate parametric oscillation

    Giant Kerr nonlinearities in Circuit-QED

    Get PDF
    The very small size of optical nonlinearities places wide ranging restrictions on the types of novel physics one can explore. For an ensemble of multi-level systems one can synthesize a large effective optical nonlinearity using quantum coherence effects but such non-linearities are technically extremely challenging to demonstrate at the single atom level. In this work we describe how a single artificial multi-level Cooper Pair Box molecule, interacting with a superconducting microwave coplanar waveguide resonator, when suitably driven, can generate extremely large optical nonlinearities at microwave frequencies, with no associated absorption. We describe how the giant self-Kerr effect can be detected by measuring the second-order correlation function and quadrature squeezing spectrum.Comment: 4 pages, 4 figures, 1 table; version accepted by PRL edito
    • …
    corecore