554 research outputs found

    Microprocessor fault-tolerance via on-the-fly partial reconfiguration

    Get PDF
    This paper presents a novel approach to exploit FPGA dynamic partial reconfiguration to improve the fault tolerance of complex microprocessor-based systems, with no need to statically reserve area to host redundant components. The proposed method not only improves the survivability of the system by allowing the online replacement of defective key parts of the processor, but also provides performance graceful degradation by executing in software the tasks that were executed in hardware before a fault and the subsequent reconfiguration happened. The advantage of the proposed approach is that thanks to a hardware hypervisor, the CPU is totally unaware of the reconfiguration happening in real-time, and there's no dependency on the CPU to perform it. As proof of concept a design using this idea has been developed, using the LEON3 open-source processor, synthesized on a Virtex 4 FPG

    An Integrative Genomics Approach to Biomarker Discovery in Breast Cancer

    Get PDF
    Genome-wide association studies (GWAS) have successfully identified genetic variants associated with risk for breast cancer. However, the molecular mechanisms through which the identified variants confer risk or influence phenotypic expression remains poorly understood. Here, we present a novel integrative genomics approach that combines GWAS information with gene expression data to assess the combined contribution of multiple genetic variants acting within genes and putative biological pathways, and to identify novel genes and biological pathways that could not be identified using traditional GWAS. The results show that genes containing SNPs associated with risk for breast cancer are functionally related and interact with each other in biological pathways relevant to breast cancer. Additionally, we identified novel genes that are co-expressed and interact with genes containing SNPs associated with breast cancer. Integrative analysis combining GWAS information with gene expression data provides functional bridges between GWAS findings and biological pathways involved in breast cancer

    Run-time Resource Management in CMPs Handling Multiple Aging Mechanisms

    Get PDF
    Abstract—Run-time resource management is fundamental for efficient execution of workloads on Chip Multiprocessors. Application- and system-level requirements (e.g. on performance vs. power vs. lifetime reliability) are generally conflicting each other, and any decision on resource assignment, such as core allocation or frequency tuning, may positively affect some of them while penalizing some others. Resource assignment decisions can be perceived in few instants of time on performance and power consumption, but not on lifetime reliability. In fact, this latter changes very slowly based on the accumulation of effects of various decisions over a long time horizon. Moreover, aging mechanisms are various and have different causes; most of them, such as Electromigration (EM), are subject to temperature levels, while Thermal Cycling (TC) is caused mainly by temperature variations (both amplitude and frequency). Mitigating only EM may negatively affect TC and vice versa. We propose a resource orchestration strategy to balance the performance and power consumption constraints in the short-term and EM and TC aging in the long-term. Experimental results show that the proposed approach improves the average Mean Time To Failure at least by 17% and 20% w.r.t. EM and TC, respectively, while providing same performance level of the nominal counterpart and guaranteeing the power budget

    Could nearby star-forming galaxies light up the point-like neutrino sky?

    Full text link
    Star-forming and starburst galaxies, which are well-known cosmic-rays reservoirs, are expected to emit gamma-rays and neutrinos predominantly via hadronic collisions. In this Letter, we analyze the 10-year Fermi-LAT spectral energy distributions of 13 nearby galaxies by means of a physical model which accounts for high-energy proton transport in starburst nuclei and includes the contribution of primary and secondary electrons. In particular, we test the hypothesis that the observed gamma-ray fluxes are mostly due to star-forming activity, in agreement with the available star formation rates coming from IR and UV observations. Through this observation-based approach, we determine the most-likely neutrino counterpart from star-forming and starburst galaxies and quantitatively assess the ability of current and upcoming neutrino telescopes to detect them as point-like sources. Remarkably, we find that the cores of the Small Magellanic Cloud and the Circinus galaxy are potentially observable by KM3NeT/ARCA with 6 years of observation. Moreover, most of the nearby galaxies are likely to be just a factor of a few below the KM3NeT and IceCube-Gen2 point-like sensitivities. After investigating the prospects for detection of gamma-rays above TeV energies from these sources, we conclude that the joint observations of high-energy neutrinos and gamma-rays with upcoming telescopes will be an objective test for our emission model and may provide compelling evidence of star-forming activity as a tracer of neutrino production.Comment: 7 pages, 2 figure

    Enhancer of zeste homolog 2 (EZH2) in pediatric soft tissue sarcomas: first implications.

    Get PDF
    Soft tissue sarcomas of childhood are a group of heterogeneous tumors thought to be derived from mesenchymal stem cells. Surgical resection is effective only in about 50% of cases and resistance to conventional chemotherapy is often responsible for treatment failure. Therefore, investigations on novel therapeutic targets are of fundamental importance. Deregulation of epigenetic mechanisms underlying chromatin modifications during stem cell differentiation has been suggested to contribute to soft tissue sarcoma pathogenesis. One of the main elements in this scenario is enhancer of zeste homolog 2 (EZH2), a methyltransferase belonging to the Polycomb group proteins. EZH2 catalyzes histone H3 methylation on gene promoters, thus repressing genes that induce stem cell differentiation to maintain an embryonic stem cell signature. EZH2 deregulated expression/function in soft tissue sarcomas has been recently reported. In this review, an overview of the recently reported functions of EZH2 in soft tissue sarcomas is given and the hypothesis that its expression might be involved in soft tissue sarcomagenesis is discussed. Finally, the therapeutic potential of epigenetic therapies modulating EZH2-mediated gene repression is considered

    Starburst galaxies strike back: a multi-messenger analysis with Fermi-LAT and IceCube data

    Full text link
    Starburst galaxies, which are known as "reservoirs" of high-energy cosmic-rays, can represent an important high-energy neutrino "factory" contributing to the diffuse neutrino flux observed by IceCube. In this paper, we revisit the constraints affecting the neutrino and gamma-ray hadronuclear emissions from this class of astrophysical objects. In particular, we go beyond the standard prototype-based approach leading to a simple power-law neutrino flux, and investigate a more realistic model based on a data-driven blending of spectral indexes, thereby capturing the observed changes in the properties of individual emitters. We then perform a multi-messenger analysis considering the extragalactic gamma-ray background (EGB) measured by Fermi-LAT and different IceCube data samples: the 7.5-year High-Energy Starting Events (HESE) and the 6-year high-energy cascade data. Along with starburst galaxies, we take into account the contributions from blazars and radio galaxies as well as the secondary gamma-rays from electromagnetic cascades. Remarkably, we find that, differently from the highly-constrained prototype scenario, the spectral index blending allows starburst galaxies to account for up to 40%40\% of the HESE events at 95.4%95.4\% CL, while satisfying the limit on the non-blazar EGB component. Moreover, values of O(100 PeV)\mathcal{O}(100~\mathrm{PeV}) for the maximal energy of accelerated cosmic-rays by supernovae remnants inside the starburst are disfavoured in our scenario. In broad terms, our analysis points out that a better modeling of astrophysical sources could alleviate the tension between neutrino and gamma-ray data interpretation.Comment: 20 pages, 15 figures. v2: updated to published versio

    MicroRNAs in rhabdomyosarcoma: pathogenetic implications and translational potentiality

    Get PDF
    There is growing evidence that interconnections among molecular pathways governing tissue differentiation are nodal points for malignant transformation. In this scenario, microRNAs appear as crucial players. This class of non-coding small regulatory RNA molecules controls developmental programs by modulating gene expression through post-transcriptional silencing of target mRNAs. During myogenesis, muscle-specific and ubiquitously-expressed microRNAs tightly control muscle tissue differentiation. In recent years, microRNAs have emerged as prominent players in cancer as well. Rhabdomyosarcoma is a pediatric skeletal muscle-derived soft-tissue sarcoma that originates from myogenic precursors arrested at different stages of differentiation and that continue to proliferate indefinitely. MicroRNAs involved in muscle cell fate determination appear down-regulated in rhabdomyosarcoma primary tumors and cell lines compared to their normal counterparts. More importantly, they behave as tumor suppressors in this malignancy, as their re-expression is sufficient to restore the differentiation capability of tumor cells and to prevent tumor growth in vivo. In addition, up-regulation of pro-oncogenic microRNAs has also been recently detected in rhabdomyosarcoma

    Enhancer of zeste homolog 2 (EZH2) in pediatric soft tissue sarcomas: first implications

    Get PDF
    Soft tissue sarcomas of childhood are a group of heterogeneous tumors thought to be derived from mesenchymal stem cells. Surgical resection is effective only in about 50% of cases and resistance to conventional chemotherapy is often responsible for treatment failure. Therefore, investigations on novel therapeutic targets are of fundamental importance. Deregulation of epigenetic mechanisms underlying chromatin modifications during stem cell differentiation has been suggested to contribute to soft tissue sarcoma pathogenesis. One of the main elements in this scenario is enhancer of zeste homolog 2 (EZH2), a methyltransferase belonging to the Polycomb group proteins. EZH2 catalyzes histone H3 methylation on gene promoters, thus repressing genes that induce stem cell differentiation to maintain an embryonic stem cell signature. EZH2 deregulated expression/function in soft tissue sarcomas has been recently reported. In this review, an overview of the recently reported functions of EZH2 in soft tissue sarcomas is given and the hypothesis that its expression might be involved in soft tissue sarcomagenesis is discussed. Finally, the therapeutic potential of epigenetic therapies modulating EZH2-mediated gene repression is considered
    corecore