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Run-time Resource Management in CMPs
Handling Multiple Aging Mechanisms

Hashem Haghbayan, Member, IEEE, Antonio Miele, Senior Member, IEEE, Onur Mutlu, Member, IEEE,
Juha Plosila, Member, IEEE,

Abstract—Run-time resource management is fundamental for efficient execution of workloads on Chip Multiprocessors. Application-
and system-level requirements (e.g. on performance vs. power vs. lifetime reliability) are generally conflicting each other, and any
decision on resource assignment, such as core allocation or frequency tuning, may positively affect some of them while penalizing
some others. Resource assignment decisions can be perceived in few instants of time on performance and power consumption, but not
on lifetime reliability. In fact, this latter changes very slowly based on the accumulation of effects of various decisions over a long time
horizon. Moreover, aging mechanisms are various and have different causes; most of them, such as Electromigration (EM), are subject
to temperature levels, while Thermal Cycling (TC) is caused mainly by temperature variations (both amplitude and frequency).
Mitigating only EM may negatively affect TC and vice versa. We propose a resource orchestration strategy to balance the performance
and power consumption constraints in the short-term and EM and TC aging in the long-term. Experimental results show that the
proposed approach improves the average Mean Time To Failure at least by 17% and 20% w.r.t. EM and TC, respectively, while
providing same performance level of the nominal counterpart and guaranteeing the power budget.

Index Terms—Lifetime Reliability, Many-core Architectures, Mapping, Run-time Resource Management
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1 INTRODUCTION

The fast technology scaling we have witnessed during the last
decades has led to integration of from few tens to several hundreds
of cores on a single Chip Multiprocessor (CMP). CMPs are cur-
rently the backbone in computing systems for high-performance
execution of multi-programmed workloads. However, the end of
Dennard scaling has implied that the supply voltage has not
followed the same exponential scaling experienced in transistor
miniaturization, leading to dark silicon [1]. In particular, phys-
ical limits in device packaging and cooling technology put a
constraint on peak power consumption and peak power density,
making it impossible to power on an entire chip at a nominal
voltage/frequency (VF) level at the same time. From a practical
point of view, the Thermal Design Power (TDP) is generally
defined in a conservative way by designers to avoid excessive
heating potentially damaging transistor junctions. Thus, to satisfy
the TDP, only a fraction of the available on-chip cores can be
operated at a nominal VF level at any given moment. Alternatively,
a larger portion of cores can be operated at a reduced VF level.
International Technology Roadmap for Semiconductors (ITRS)
Projections in 2013 [2] have shown that the percentage of dark
silicon for a chip in 22nm technology is around 50% while at
8nm it will increase to 70%. As a consequence, on-chip power
management is becoming an increasingly relevant issue.

TDP control ensures avoidance of chip failures due to extreme
power densities; similarly, temperature control ensures avoidance
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of thermal peaks. Sometimes, TDP is considered too conserva-
tive, and more advanced power management strategies, such as
Thermal Safe Power (TSP) [3], have been defined to achieve
higher performance. However, all these approaches cannot handle
the gradual effects of high temperatures experienced by the chip
over time. As reported by the ITRS in 2011 [2], long-term high
temperature profiles, even if within design guard bands, lead
to an acceleration of aging and wear-out process of the chips
manufactured in very small technology nodes. Thus, phenom-
ena such as Electromigration (EM), Negative-Bias Temperature
Instability (NBTI) or Thermal Cycling (TC), cause delay errors
and, eventually, device breakdowns [4]. Moreover, it has been
shown how failure mechanisms are exponentially dependent on
the temperature [5]; a 10 − 15◦C difference in the operating
temperature may result in a 2× difference in the device lifetime.

Run-time resource management plays a key role in the effi-
cient execution in CMPs since they use to experience variable
workloads composed of several multi-threaded applications en-
tering and leaving the system with an unknown trend. Dynamic
Reliability Management (DRM) has been widely investigated
to enhance run-time resource management to handle also aging
issues (e.g., [6], [7], [8], [9], [10]). Indeed, properly controlling
the activity of a CMP executing a variable workload allows at
the same time to co-manage performance and power consumption
in the short term, and lifetime reliability in the long term. The
feedback loop in DRM is exploited also to monitor the aging status
of the single cores to take decision on the workload distribution
and architecture tuning by acting on various knobs at application
level, such as the mapping and scheduling, and at architecture
level, such as Dynamic Voltage/Frequency Scaling (DVFS) and
Per-Core Power Gating (PCPG). However, the largest part of the
literature addresses aging issues only with a partial view. This
is particularly due to the fact that there are two different classes
of aging mechanisms: i) the ones that are mainly subject to the
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temperature levels, such as EM or NBTI, and ii) TC, that depends
also on the amplitude and the frequency of the temperature
variations [4]. Thus, the literature proposes approaches acting only
on one of the two classes (e.g., [6], [7], [8], [9], [10] vs. [11], [12])
and, most of the time, strategies that are beneficial for first class
of aging mechanisms have negative effects on the other one and
vice versa.

Given these motivations, we propose a novel comprehensive
lifetime-reliability-aware run-time resource management approach
for CMPs addressing multiple aging mechanisms, i.e., EM and
TC. The approach aims at optimizing the system performance (in
terms of completed applications per unit of time) while guaran-
teeing the given power budget (specified as TDP or TDP), and it
is based on state-of-the-art strategies for mapping, scheduling and
Dynamic Power Management (DPM), that have been extended to
take into account also the aging status of the cores in the decision
process in order to prolong the system lifetime. In more detail, the
main contributions can be expressed as follows:

• Proposing a new run-time framework capable of observing
the short-term power and performance status of a CMP as
well as analyzing its long-term aging history. It facilitates a
unified control and organization of resources based on current
and predicted future of the systems status.

• Proposing a multi-objective run-time resource management
approach to simultaneously control short-term effects, avoid-
ing violation of the power budget and maximizing system
performance; and long-term effects, keeping EM and TC
under control to maximize system lifetime reliability.

• Evaluating the proposed resource management approach in
various working scenarios against state-of-the-art work and
demonstrating an improvement of lifetime about 17% and
20% w.r.t. the EM and TC, respectively, while maintaining
similar performance and power consumption profile.

The paper is organized as follows. Sections 2, 3 and 4 discuss
the preliminaries, a motivating example, and related work, re-
spectively. Section 5 describes in details the proposed reliability-
aware resource management approach. Section 6 presents the
experimental evaluation and Section 7 draws conclusions.

2 PRELIMINARIES

2.1 System Architecture
This work targets Chip Multiprocessors (CMPs) having an archi-
tecture similar to the one depicted in Figure 1; it is the classical
multi-core system organized in a mesh grid of homogeneous cores
interconnected by means of a Network-on-Chip (NoC) (as in
several past works, e.g., [13], [10], [14], [9]). The CMP has a
memory hierarchy comprising a unified off-chip main memory
accessible through a set of Memory Controllers (MCs) placed on
the sides of the chip and accessible from the routers at the corners
of the NoC, a shared L2 cache distributed all over the NoC, and
private per-core L1 caches. Each core provides individual HW
knobs for DVFS and PCPG, and sensors for temperature and
power measures [10], [9].

The CMP loads an Operating System (OS) acting as a con-
troller which monitors the state of the system, coordinates the
application execution and tunes the HW knobs (as in [1], [9]).
Considered applications are multi-threaded and data-intensive; the
workload is composed of several applications entering and leaving
the system with an unknown trend. Applications are dynamically
distributed and managed by three cooperating OS components:
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Fig. 1. The target system architecture.

• Mapping unit which identifies a set of idle cores in the
architecture to execute each incoming applications, enqueued
in an execution request list.

• Scheduling unit which schedules the execution of the threads
belonging to each running application on the allocated cores.

• Dynamic Power Management (DPM) unit which controls the
overall power consumption based on a given budget.

Baseline solution. Since this work focuses on managing threats
due to multiple aging mechanisms, the approach we present here
is an extension of a full-fledged nominal run-time resource man-
agement solution, obtained by integrating various state-of-the-art
strategies. In particular, the mapping has been divided in a region
selection step, automated by MapPro algorithm [15] and a thread
mapping one, automated by CoNA algorithm [16]; MapPro also
exploits the memory affinity metric proposed in [13] to distribute
applications based on the memory traffic. The scheduling has been
implemented by means of the standard single-queue multipro-
cessor scheduling algorithm using the Round-Robin policy [17],
and the DPM approach by means of the approach in [18]. The
three selected units cooperate to maximize performance, in terms
of completed applications per unit of time while not violating
the given power budget. In particular, the mapping unit tries
to maximize the number of concurrently running applications
on the cores’ grid and to give the largest possible number of
cores to run concurrently threads of each application. Then, since
the mapping policy partitions the cores among applications, the
popular Round-Robin scheduling policy allows all application’s
threads to advance at the same time, thus minimizing application
execution time. Finally, the DPM unit tunes VF of cores assigned
to each application to run it as fast as possible without violating
the power budget. The goal of this work is to enhance this scheme
to consider also lifetime reliability.

2.2 Reliability Model

Aging sensors are not generally available in commercial chips;
thus, a common practice in DRM (e.g. [19], [9], [12]) is to adopt
the classical stochastic reliability model based on the Weibull
distribution [4]. The reliability of a single core acting at a reference
worst-case temperature T is estimated as:

R(t) = e−(
t

α(T ) )
β

(1)

where t is the current time (in hours), β the Weibull slope
parameter, and α(T ) the scale parameter, or aging rate, depending
on the considered aging mechanism and to the fixed temperature
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T . The reliability model is extended, as discussed in [5], to
consider temperature variations as follows:

R(t) = e
−
(∑i

j=1

τj
αj(T )

)β

(2)

where τj represents the duration of each time period with constant
steady-state temperature Tj in the core up to time t (i.e., t =∑i

j=1 τi). Moreover, when interested in analyzing the average
aging trend, Equation 2 is also simplified by computing an average
aging rate by tracing the system execution for a representative time
period and by using the following formula:

αavg =

∑p
i=0 τi∑p

i=0
τi

αi(T )

(3)

where τi represents the duration of the p steps within the consid-
ered period. Thus, αavg can be applied in both Equations 1 and 2.
Finally, the overall expected lifetime of the core is computed in
terms of Mean Time To Failure (MTTF):

MTTF =

∫ ∞

0
R(t)dt. (4)

When the system works in steady-state conditions for the entire
operating life, as we will consider in the experimental sessions of
this work, MTTF can be also computed as:

MTTF = αavg · Γ
(
1 +

1

β

)
(5)

where Γ is the statistical gamma function.
In this paper we consider two different aging mechanisms, that

are Electromigration (EM) and Thermal Cycling (TC); each one
of them is characterized by a specific formula for the aging rate
α(T ) parameter to be used in the above lifetime reliability model,
described in the following.

The EM aging rate is derived from Black’s equation [4] as:

αEM =
AEM (J − Jcrit)

−ne
Ea
kT

Γ
(
1 + 1

β

) (6)

where AEM is a process-dependent constant, J and Jcrit the
current density and the critical value activating EM, Ea the
constant EM activation energy, k the Boltzmann’s constant, and
n a material-dependent constant. Almost all the other aging
mechanisms, but TC, have the α based on a formula similar to
the Black’s equation.

TC aging rate depends on both temperate peak TMax and the
amplitude of the thermal cycle δT as stated by the Coffin-Mason’s
equation [4], [5], which estimates the overall lifetime in terms of
expected number of cycles:

NTC = ATC (δT − Tth)
(−b)

e
EaTC
kTMax (7)

where ATC is an empirically determined fitting constant, Tth is
the temperature where the inelastic deformation begins, b is the
Coffin-Mason exponent constant, EaTC

is the activation energy
for TC. From Equation 7, the TC aging rate to be used in
Equation 1 is derived as follows:

αTC =
NTC∆t

Γ
(
1 + 1

β

) (8)

where ∆t is the duration of a single cycle. It is worth noting that
the slope parameter β may assume different values for the two
aging mechanisms.
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(i.e. overall value, computed per each core as the minimum of the two
precedent values) for the four considered approaches: baseline, EM-
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The Coffin-Mason equation assumes, as Black’s one, an ideal
steady state situation. To consider a more realistic situation com-
prising various thermal cycles having different amplitudes and
maximum temperature, Equation 2 can be applied on the sequence
of occurring cycles. Such cycles can be extracted at run-time by
means of the rainflow count algorithm [20]. Finally, in the case
the system experiences a steady state situation with a list of cycles
periodically occurring, Ni of the various m identified cycles can
be aggregated in an average value by means of the Miner’s rule [5]:

NTC avg =
m∑m

i=1
1
Ni

(9)

In such a situation, ∆t in Equation 8 should represent the average
duration of the various cycles.

3 MOTIVATING EXAMPLE

Let us consider a system architecture composed of 8× 8 cores, as
the one in Figure 1, executing a variable workload1. We performed
four runs with the same workload and considering different sets of
alternative policies for the same run-time resource management
approach, with the aim at investigating the long-term effects
on EM and TC. In particular, the first considered approach is
the defined baseline (described in Section 2.1), representing the
basic reliability-unaware approach. Such an approach has been
enhanced by either introducing EM-awareness or TC-awareness.
Both the two reliability-aware approaches act on the various knobs
in mapping, scheduling and DPM to balance performance and the

1. Details on the system configuration are provided in Section 6.
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considered aging mechanism. In particular, in each of the three
phases, decisions are taken by prioritizing cores with an higher
reliability w.r.t. one of the two aging mechanisms (i.e., cores are
sorted w.r.t. their REM or RTC value). Finally, the last analyzed
approach features both EM-awareness and TC-awareness, in an
orchestrated way as discussed in this paper.

Figure 2 reports the results of such preliminary experiments.
Each plot represents with colors the MTTF of each core in the
CMP under specific working conditions. In particular, each row
of plots refers to an aging mechanism, i.e., EM, TC and both of
them (computed as the minimum of the two separate values as
in [9]); while each column of plots represents results for one of
the considered approaches, i.e., baseline, EM-policy, TC-policy
and EM/TC-policy. As expected, the reliability-unaware baseline,
which acts on mapping and scheduling of threads, DVFS, and
PCPG to trade off between performance and power consumption
in the short term, has a deleterious effect on aging in the long
term. This demonstrates that the DPM policy controlling the
proper distribution of the power budget by means of DVFS avoids
temperature peaks but it does not suffice in maintaining a low
temperature profile and reducing temperature fluctuations.

When considering the reliability-aware policies (two central
columns), we can notice that each policy is beneficial only for the
aging mechanism it is aware of but not for the other one. Indeed,
EM and TC are caused by different aspects, temperature levels and
variations respectively, that are conflicting in the reliability-aware
policies. The classical EM-policy reduces the overall temperature
levels by neglecting how many temperature variations it may
cause, and, conversely, the TC-policy minimizes the number
of temperature variations without any attention to the average
temperature experienced by the various cores. The final effect,
reported in the last row, is that both the two approaches offers
very poor results in terms of MTTF values. We may conclude
that to be effective on both EM and TC, it is necessary to act in
the long term on both the two causes of the aging in synergy. As
shown in the last column of plots, an EM/TC-aware policy, as the
one proposed in this paper, succeeds in this purpose.

To better analyze these results, Figure 3 reports the minimum
(MIN), maximum (MAX), and average (AVG) reliability values.
We can notice that joint management of EM and TC allows
to increase both minimum and average reliability for the two
aging mechanisms at least of 19% and 22% w.r.t. the baseline
respectively. The minimum reliability value represents the worst
case situation, i.e., the most aged core, while the average value
shows the mean status of the overall architecture. At the same
time, standard deviation in reliability is minimized, indicating that
the joint management avoids unbalanced aging in all regions of the
system. We may notice that EM-policy and TC-policy provides
merely better average results for their specified reliability type,
but at the same time this has a considerably negative effect on the
other type of reliability not targeted in the policy; thus, the overall
reliability values for both policies are worse than the EM/TC-
policy, that is capable at facing with both the two aging mech-
anisms. In conclusion, we believe that resource management for
CMPs needs an efficient multi-objective feedback-based dynamic
approach focusing on the both aging mechanisms at the same time
of power consumption and performance.

4 RELATED WORK

DRM has been first proposed in [21], [22] to deal with aging
in single-core architectures by means of a proper DVFS tuning.

These first works address several aging mechanisms, such as
EM, NBTI and TC, but they consider a simplistic reliability
model based on an exponential failure distribution to ease MTTF
computation; this model is not realistic for modern systems.
Moreover, the single-core architecture does not represent modern
multi-core architecture and DVFS is only a single knob among
various available ones in the overall system.

Subsequent approaches (e.g., [23], [24]) target shared-memory
multi-core systems and actuate on DVFS and task scheduling.
Simplistic reliability models not including TC are still adopted.
Moreover, these studies consider single-threaded applications;
more complex applications composed of multiple threads or a
task-graph of pipelined tasks, executed by modern multi-core
systems, cannot be managed by these schemes. Further works [25],
[26] extend to multiple parallel applications and more accurate
aging models, while other ones [27], [28] consider heterogeneous
architectures. However, No one of these approaches defines a
proper reliability-aware mapping strategy, that is highly relevant in
aging management as the number of architectural cores increases.

Later contributions (e.g., [6], [7], [19], [9]) propose reliability-
driven run-time workload distribution and resource management
in CMPs to find a trade off between performance and lifetime
reliability. The central element of all these proposals is the map-
ping strategy; in fact, to achieve high application performance and
prolong the system lifetime it is fundamental to identify the group
of processing cores among the large availability of resources to be
used to execute the various threads/tasks of each application in an
optimal way. More precisely, the topology of the selected cores
has a relevant effect both on the performance, due to the intensive
communications required by the several tasks/thread in the same
application and on the overall thermal stress on the various cores
due to the heating exchange among neighbour elements. The
approaches in [6], [7] periodically migrate applications’ tasks
from elder cores to younger ones; aging is computed accord-
ing accurate models for EM or NBTI. The mapping algorithm
in [8] performs an almost-exhaustive solution space exploration to
balance aging. The technique in [29] defines a zoning strategy
to select the younger area of the resource grid to deploy the
arrived applications. The approach presented in [30] uses aging
status prediction to drive possible thread mapping decisions. The
technique is specifically tailored for NBTI. In [19], machine
learning is used for similar purposes in the management policy. All
the previous approaches address only partially the overall run-time
resource management problem, in particular frequently neglecting
power management. In this perspective, [9], [10] present two com-
prehensive approaches for mapping incoming application task-
graphs and actuating on DVFS and PCPG to optimize performance
while guaranteeing both the power budget and the given lifespan.
Similarly to all previous approaches, they only consider EM. In
conclusion, none of the discussed methods addresses TC nor can
be easily extended or adapted in that direction.

Apart [21], few other works address also TC in multi-core
systems. A machine learning strategy is used in [31] to select the
proper DVFS governor to trade performance and aging; the ap-
proach is not effective on CMP with a large number of cores since
providing a very limited control on DVFS. The run-time mapping
policy proposed in [32] addresses all aging mechanisms for single-
threaded applications. The idea is to use the youngest core w.r.t.
the various aging models without any DVFS tuning. As shown
in [12], this strategy is not efficient for TC; in fact, it requires a
more direct control of the amplitude and the frequency of the tem-
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perature variations. Furthermore, the simplistic mapping method is
not suitable for multi-threaded applications. The approach in [11]
considers in principle the same base idea as the previous one and
therefore shares its limitations. In particular, the management aims
at minimizing the variance in resource utilization so that tempera-
ture levels and variations are indirectly minimized. The approach
in [33] focuses on heterogeneous architectures, integrating both
CPU and GPU. Indeed, the mapping strategy for single-threaded
applications is very similar to the previous ones. The novelty is
a wear balancer which redistributes the applications based on
the aging status of the various heterogeneous cores; to limit the
number of thermal cycles, thus not incurring in the same weakness
of [32], the balancer avoids to perform relocations between cores
with a high temperature difference. Indeed, this is an interesting
idea, even if a bit immature w.r.t. the approach we here propose.
A more advanced approach addressing TC in a systematic way
in the scenario of CMPs running a variable workload of multi-
threaded applications has been proposed in [12]. The approach
features policies for mapping applications on the grid of cores,
scheduling applications’ thread on the allocated cores and tuning
DVFS to trade performance and excessive heating withing the
available power budget. On the other hand, the work considers TC
but not EM.

As a conclusion, to the best of our knowledge, no work in
the literature addresses entirely the aging management of both
EM (or any other temperature-level-based aging mechanism) and
TC in the complex scenario of CMPs running multi-threaded
applications. Our aim is therefore to restart from our previous
experiences in reliability-aware run-time resource management
against EM [9] and TC [12], that are incomplete proposals w.r.t.
the overall discussed scenario and cannot be extended in that
direction, in order to design a completely-new comprehensive and
full-fledged approach for both EM and TC.

5 PROPOSED CONTROLLER ARCHITECTURE

Figure 4 presents the overall architecture of the proposed lifetime-
reliability-aware run-time resource manager. Such a controller
integrated in the OS running on top of the CMP implements a
feedback loop with the system to monitor and control workload
execution and architecture status. As discussed in the preliminar-
ies, the controller is internally organized into three basic modules:
i) Mapping unit, ii) Scheduling unit, and iii) DPM unit. In addition,

Algorithm 1 Reliability Analysis of a single core
Inputs:
- ti: overall system operational life
- T: core temperature trace (a vector) for current control period ti
Outputs:
- REM : reliability w.r.t. EM at time ti
- RTC : reliability w.r.t. TC at time ti
- statusEM : core status w.r.t. EM at the present control period ti
- statusTC : core status w.r.t. TC at the present control period ti
Internal registers:
- AEM : accumulated EM aging rate
- ATC : accumulated TC aging rate
(both registers are initialized to 0 at the beginning of the system operating life)
Constants:
- ∆t: duration of the long-term control period
Body:
1: Tlow ← low pass filter(T);
2: αEM avg ← compute αEM avg(Tlow);
3: AEM = AEM + ∆t

αEM avg

4: REM = e
−

(
ti

AEM

)β

5: cycles← rainflow count(Tlow)
6: Ni ← coffin masson(cycles)
7: NTC avg ← miner rule(Ni)
8: αTC avg ←

NTC avg·(∆t/|cycles|)
Γ
(
1+ 1

β

)
9: ATC = ATC + ∆t

αTC avg

10: RTC = e
−

(
ti

ATC

)β

11: statusEM = classify(REM )
12: statusTC = classify(RTC )

we here introduce a new Reliability Analysis unit, estimating the
aging status of the various cores based on continuous temperature
measures and the stochastic lifetime reliability model. The Re-
liability Analysis unit provides to each one of the three above
modules the aging status of the various cores. The receiving
modules feature state-of-the-art policies, enhanced to consider
also reliability in decision making together with performance and
power consumption; for these reasons they are referred to as
Reliability-aware units (RA in the figure).

5.1 Reliability Analysis Unit
The Reliability Analysis unit estimates the reliability status of each
core in the architecture at the current time w.r.t. the two considered
aging mechanisms, referred to as REM and RTC . The module
receives in input the temperatures, measured on each core by
the available temperature sensors at a fixed sampling frequency2

(about 2 Hz), and collects them into a temperature buffer.
At each long-term control period ∆t (about 1-2 hours), the

temperature trace collected for each core is processed to update
the reliability values at the current time, REM and RTC according
to Algorithm 1. First, a pre-processing of the temperature trace of
each core is carried out by means of a low-pass filter, implemented
with a moving average (Line 1); the aim is to remove high-
frequency small-amplitude oscillations that generally character-
izes temperature traces. Then, the computation of the updated
REM values is executed based on Equation 2 (Lines 2–4); in
particular, in such an equation the sum in the exponent is unrolled
to separate the aging rate affecting the system in the last control
period from the previous aging history. In detail, the average
aging rate αEM avg characterizing the current control period is

2. Control periods should be tuned w.r.t. the specific working scenario.
Values reported in this paper have been experimentally defined with the setup
described in Section 6.
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computed by means of Equation 3 (Line 2) and it is summed
up to the accumulation of the average aging rates of the entire
previous history of the system saved in AEM , i.e., an internal
register of the unit (Line 3). In such a way, we obtain the value of
the exponent in Equation 2 referred to the current instant of time
and, consequently, the updated REM is derived by means of the
classical formula of the Weibull distribution (Line 4).

Regarding to TC (Lines 5–10), the pre-processed temperature
trace is first given in input to the rainflow count algorithm [20]
which extracts the list of cycles in the last long-term control
period; each cycle is a pair of peak and valley temperature values.
Then, Equations 8 and 9 are used to compute the average TC aging
rate for the current control period, αTC avg . In this computation
we assume all cycles to have the same duration; therefore, at
Line 8 the duration of each single cycle is approximated by the
length of the control period divided by the number of identified
cycles. Finally, ATC is updated similarly to EM counterpart and
RTC is computed.

After the update of the reliability values, the module analyzes
the stress status of the core (Lines 11–12); in particular, it
computes the stress factor of each core w.r.t. EM, defined as
sEM = 1/REM , and the average stress of all the cores in the
architecture, i.e., sEM avg . Thus, cores are classified according to
the stress experience as:

statusEM =


normal if sEM ≤ savg
aged if savg < sEM ≤ savg + sth
critical if sEM > savg + sth

(10)

being sth a predefined threshold. Same computation is performed
for TC.

Once all computations are carried out, the temperature buffers
are emptied to proceed with the subsequent control period. AEM

and ATC , that are initialized to 0 at the beginning of the system’s
operational life, are saved within the unit so that can be used as
previous values in the subsequent period.

5.2 Reliability-aware Mapping Unit
The Reliability-aware Mapping unit identifies a region of cores
that are proximal in the grid to be used for the execution of
a new application. The activity is performed whenever there is
a new application waiting in the request queue and some idle
core is available. Otherwise, it is postponed until some running
application terminates and releases occupied cores, making them
available for an application waiting in the execution request list.

The mapping algorithm is based on the following principles:
• Reduce EM and TC stress of the region and neighborhood of

the region in the floorplan.
• Concentrate the application threads in the closest region,

according to the network base, to optimize communication
overheads inside the network.

• Map memory-intensive applications near to the MCs, while
other ones may be located farther.

The mapping algorithm, shown in Algorithm 2, takes in input the
first application in the execution request queue and the architecture
reliability status. It is divided in two steps: i) region selection,
and ii) cores reservation. The first step (Lines 1–18) has been
inspired from the MapPro algorithm [15], re-adapted to use a new
set of affinity metrics. The algorithm ranks all the candidate core
regions based on three affinity metrics and selects the most suitable
one where to map the application. A region on the cores grid is

Algorithm 2 Reliability-aware Mapping
Inputs:
- appl: application to be mapped
- typeappl: pre-profiled application type w.r.t. memory accesses
- featuresappl: pre-profiled application features
- max DoP : maximum degree of parallelism for application execution
- REM, RTC: vectors of cores reliability
- statusEM, statusTC: vectors of cores status
Body:
1: #cores← max DoP
2: repeat
3: r ←

⌈(√
#cores− 1

)
/2

⌉
4: affmax ← −∞
5: cmap ← None
6: for c ∈ arch do
7: reg← get idle cores(c, r)
8: reg← remove critical cores(reg, statusEM, statusTC)
9: if |reg| ≥ #cores then

10: SF← compute SF(reg, REM, RTC, featuresappl)
11: V RF ← compute VRF(c, r, SF)
12: MF ← compute MF(typeappl, c)
13: aff ← V RF/MF
14: if aff > affmax then
15: affmax ← aff
16: cmap ← c
17: #cores← #cores− 1
18: until cmap = None and #core ≥ 1
19: if cmap ̸= None then
20: map(appl, cmap, r)

defined with a squared shape; it is identified by the central core
c and has a radius r. The algorithm computes the radius r of
the squared region, based on the number of concurrent threads
spawn by the application (Line 3); in the algorithm we refer to
the number of threads as #cores since we desire to execute each
thread on a separate core to maximize application performance.
The application comes with the pre-profiled information about
the maximum degree of parallelism, max DoP , that is the
maximum number of threads that can be spawned concurrently
to parallelize application execution (this value is determined by
means of a scalability analysis as the one in [34]). Thus, the
region selection algorithm starts the research by setting #cores
equal to max DoP (Line 1) and decreases the value by 1 at
each iteration until a region is not found and #cores is positive
(Lines 17–18); in this way, the algorithm finds the largest region
where to accommodate the concurrent threads of the application,
thus achieving the largest level of parallelism for the application
based on the currently available processing resources. It is worth
noting that, if necessary, it is possible to specify also a minimum
level of parallelism, min DoP , to be used as a lower bound for
#cores, thus stopping the research earlier with a failure.

Then, the algorithm scans all the cores c in the architecture
to analyze the corresponding region with radius r; in particular,
the region is candidate only if the number of idle non-critical
cores is enough to accommodate the application (Lines 7–9).
For each candidate region, the algorithm computes the affinity
metrics (Lines 10–13). According to the above principles, the
adopted affinity metrics are: i) Stress Factor (SF), ii) Vacancy
Reliability Factor (VRF), and iii) Memory Factor (MF). First
two ones are new metrics here proposed, which computation is
detailed in the next subsections, while the latter is the state-of-the-
art metric introduced in [13] and here integrated in the selected
baseline solution. SF is a new metric here proposed estimating
the impact on reliability of each core caused by the mapping of
the application on the candidate region; it exploits the pre-profiled
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Fig. 5. Look-up table to compute wEM and wTC weights.

application features to predict the stress the new application will
cause. VRF is an extension of the Vacancy Factor [15] aimed at
measuring the dispersion of the idle cores in the candidate region;
it incorporates SF of the various cores to balance dispersion with
the core aging. Finally, MF measures the affinity of the region
to the application based on the its type, that may be memory
intensive, normal or non-memory intensive [13]; the application
type is a pre-characterization received by the mapping algorithm
as input parameter. Such metrics are then combined in the overall
affinity aff . The region associated with core c presenting the
maximum aff value, if any, is selected (Lines 13–16).

In the second step (Line 19–20), the module performs the
actual reservation of #cores cores within the candidate region,
if one has been identified. The mapping works in an exclusive
way (i.e., at most one application can run on a single core); thus,
cores already assigned to other applications are not considered.
Similarly, critical cores are discarded not to negatively affect
reliability. This activity is performed by means of the CoNA
algorithm [16] aimed at minimizing network congestion caused
by the internal communication among the threads; the algorithm
has been enhanced to use SF to sort cores.
Stress Factor (SF) Computation. SF is a per-core metric esti-
mating the impact on the aging of each single core that would
be caused by the execution of the newly incoming application.
SF is computed by assuming that a specific mapping solution is
applied for the new application in the current working context
of the system and, consequently, by estimating the steady-state
temperature the core would experience. To take into account both
the considered aging mechanisms, the metric for a single core
is defined as the weighed sum of the reliability variations w.r.t.
EM and TC assuming the new working conditions will last for a
specific time period:

SF = wEM ·∆REM + wTC ·∆RTC (11)

In the formula, ∆REM and ∆RTC represent the reliability
variations w.r.t. the single aging mechanism caused by the new
temperature T ′ applied for expected execution time of the new
application ∆tappl. wEM and wTC are the two weight parame-
ters, that are dynamically computed as discussed in the next.

The formula to compute ∆REM is:

∆REM = REM − e
−
(

ti
AEM

+
∆tappl

αEM (T ′)

)β

(12)

where REM and AEM are the current reliability and accumulated
aging rate returned by the Reliability Analysis unit. Moreover the
second operand in the subtraction represents the new reliability
value caused by the new temperature T ′; such a formula is
derived from Equation 2. A run-time estimation model has been
adopted to predict the new temperature T ′ caused by the new
application w.r.t. to a selected mapping solution. In particular,
we adopted a state-of-the-art solution [35] based on a multi-layer

perception (MLP) and predicting the new temperature from the
current measured temperature of the various cores in the system
and a list of extracted application features, such as the number
of integer/floating point instructions, the number of L1/L2 cache
accesses and misses, etc. Such features and the average application
execution time ∆t are assumed to be known in advance, for in-
stance, due to online profiling performed during the previous runs
of the same application; indeed, such data are input parameters for
Algorithm 2. It is worth noting that the temperature estimator is
an utility module plugged in the proposed approach; the adopted
state-of-the-art approach [35] can be replaced by any newer
approach providing a fast steady-state temperature estimation at
the granularity of the single core.

The weight parameters wEM and wTC are computed at run-
time to adapt mapping decisions to the current aging conditions
by means of the look-up table shown in Figure 5 where the two
aging status parameters of each core, statusEM and statusTC

(previously defined with Equation 10) are used as input. wEM

(and wTC ) of a single core may be set to 0, w∗
EM (and w∗

TC )
or 1 depending on the current core status, being normal, aged or
critical, respectively, where w∗

EM (and w∗
TC ) represents a value

between 0 and 1 defined at design time, such that w∗
EM +w∗

TC =
1. This aspect has two main consequences:

• It allows to dynamically modify the relevance of an aging
mechanism w.r.t. to the other one in Equation 11 based on the
predicted absolute reliability values (∆REM and ∆RTC ),
thus taking into account only the actual aging issues. For
instance, when wEM = 1 and wTC = 0, SF is computed
only based on EM.

• It is possible to dynamically modify the relevance of SF
in the metrics aggregation (Line 13 of Algorithm 2). For
instance, when a core is in a normal status w.r.t. both the
aging mechanisms (wEM = 0 and wTC = 0), VRF formula
becomes equal to the state-of-the-art Vacancy Factor, which
considers only the cores distribution; thus the overall affinity
metric will be computed only based on cores distribution and
memory affinity. At the opposite, if wEM = 1 and wTC = 1,
due to the critical stress experienced by the core, SF will be
predominant on MF and the cores distribution.

Vacancy Reliability Factor (VRF) Computation. This metric
is inspired from the Vacancy Factor proposed in [15], aimed at
estimating the dispersion of the idle cores in a square region; the
lower the dispersion, the better the region. Such a metric is here
extended to incorporate SF to balance the cores dispersion with
the aging of the various involved cores.

Given the central node c with coordinates w, h identifying a
square region with radius r, VRF is defined as:

V RFc =
w+r∑

i=w−r

h+r∑
j=h−r

Ii,j · λ−SFi,j · (r − d+ 1) (13)

where Ii,j states whether the core with coordinates i, j is idle (1)
or not (0), and d is the Manhattan distance of the same core to the
central node. Then, SF of each core is combined in terms of an
exponentiation with a predefined base λ (5 in our case). In such
a way, the relevance of each core is reduced based on its aging
status. In the computation of Equation 13, for each core tagged
as critical for any of the two aging mechanisms, Ii,j is set to 0.
Thus, the central node maximizing the metric represents the best
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Algorithm 3 Reliability-aware Scheduling
Inputs:
- mapList: vector of cores allocated for the current application
- readyQueue: queue of ready threads for the current application
- REM, RTC: vectors of cores reliability
- statusEM, statusTC: vectors of cores
Constants:
- n: threshold distinguishing warm and cold cores
- ntimeout: timeout threshold
Body:
1: SFc ← compute SF(mapList, REM, RTC, statusEM, statusTC)
2: mapList← sort(mapList, SFc)
3: timeoutQueue← ∅
4: warmQueue← ∅
5: coldQueue← ∅
6: for c ∈mapList do
7: use← compute previous activity(c)
8: if use > ttimeout then
9: push(timeoutQueue, c)

10: else if use > n then
11: push(warmQueue, c)
12: else
13: push(coldQueue, c)
14: for t ∈ readyQueue do
15: if timeoutQueue ̸= ∅ then
16: c← pop(timeoutQueue)
17: schedule(t, c)
18: else if warmQueue ̸= ∅ then
19: c← pop(warmQueue)
20: schedule(t, c)
21: else if coldQueue ̸= ∅ then
22: c← pop(coldQueue)
23: schedule(t, c)
24: else
25: break

candidate since it has the maximum number of idle cores closer to
itself and not considerable aged.

5.3 Reliability-aware Scheduling Unit
The Reliability-aware Scheduling unit is responsible for executing
the applications’ running threads while balancing and reducing the
EM and TC stress. The unit takes in input the metrics produced
by the Reliability Analysis unit and the current mapping of the
running applications. The unit behavior has been designed as a
standard single-queue multiprocessor scheduling algorithm [17]:
1) a thread balancing policy distributes in a uniform way the load
among the various cores, and 2) a first-in-first-out ready queue
is used for each core to implement a Round-Robin policy among
application threads to fairly assign the same time slice to each
of them in a periodic way. The novelty of our approach is in the
employment of reliability-aware metrics to decide which core to
prefer in the threads distribution. In particular, the scheduler will
prioritize the usage of less stressed cores, especially in the case
the number of running threads is lower than the number of cores
reserved to the application (i.e., the application is not running its
parallel section); otherwise, it will behave exactly as the standard
approach. Moreover, since each core is assigned at most to a single
application and application’s threads have the same relevance, no
priority mechanism is used in the Round-Robin scheduling.

The scheduler workflow is shown in Algorithm 3; it is awaken
with a short time quantum (100 ms). It receives the queue of
the ready threads in the application, i.e. all threads except the
blocked ones, the list of cores assigned to the application, and the
reliability metrics. First, cores are sorted based on a stress factor
SFc (Lines 1–2) computed with the current reliability values:

SFc = wEM ·REM + wTC ·RTC (14)

Then, cores are divided in three queues according to an analysis
of the temperature (Lines 3–13):

• warm cores, that have been used during the previous n
scheduling epochs,

• cold cores, that have not been used during the previous n
scheduling epochs, and

• timeout cores, that have not been used for a period larger than
ntimeout scheduling epochs (with ntimeout ≫ n).

The scheduling policy prefers the use of warm cores rather than
cold ones since this would reduce thermal cycles. In fact, if a
thread is assigned to an warm core, its temperature will not vary
considerably as well as if a cold core continues not being used.
Indeed, since the scheduling quantum is shorter that the transitory
in temperature variation, we have to consider n subsequent epochs
to distinguish between warm and cold cores. n should be tuned
based on the transitory duration. Based on this policy, cold cores
may never be used; for this reason, when a timeout ttimeout

expires, such cores are put on the third list that will be considered
with the highest priority in the scheduling activities.

The scheduling is performed by iterating on the ready threads
until there is an available core in the three core queues which are
used in a sequence (Lines 14–25). The fact that each queue is
sorted based on SFc allows to use less aged cores first, in case
the number of threads is less than the number of cores. Finally,
if threads are more than the available cores, the algorithm ends
when all queues are empty (Line 25) and the scheduling of the
exceeding threads is postponed to the next time quantum.

It is worth noting how the scheduling algorithm takes decisions
by using primarily the temperature (the queue of warm cores is
used before the one of cold cores) and secondarily the reliability
metric (since cores in each queue are sorted according to SFc).
This is due to the fact that the temperature varies with a very
short time horizon, equal to the scheduling quantum while the
overall reliability very slow in the time. Therefore, keeping core
at the same high temperature for several scheduling epochs will
not have a perceivable effect on the reliability, and in particular
on EM, while making its temperature to fluctuate will add more
thermal cycles, thus negatively affecting TC. In conclusion, the
scheduling unit mainly mitigate temperature fluctuations while the
reliability balancing is mainly addressed by the mapping unit.

5.4 Reliability-aware DPM Unit
The Reliability-aware DPM unit controls the chip power consump-
tion by acting on per-core DVFS and PCPG; in our proposal the
Reliability-aware DPM unit performs a specific DVFS control
based on the aging status of the cores. To take decisions, DPM
unit receives in input the current mapping decisions, the aging
status of the cores and the difference between the current power
consumption and the given power budget. The power budget may
be expressed by means of any approach, such as TDP or TSP [3].

The unit is awaken when there is a relevant variation in the
consumed power, or when there is a variation in the available
power budget (for instance when TDP is used). PCPG is simply
actuated on all the cores not allocated to any running applications
so that the system saves power and consequently reduces cores’
temperatures and stress. Then, for the used cores, DVFS is tuned at
the granularity of the single application by means of an heuristic
approach aimed at maximizing the power budget utilization and
distributing it by balancing applications’ performance and cores’
stress. To avoid performance bottleneck, DPM unit tunes the
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same VF level to all cores allocated for a single application [36].
The selection of the candidate application(s) which cores will be
subject to a DVFS tuning is based on a combination of four metrics
considering performance and reliability aspects: i) applications’
network intensity [18], ii) congestion in their mapping area [18],
performance-power ratio [37], and a DVFS reliability cost here
defined. To compute the first two metrics, the network interface
of each core c in the architecture is assumed to be provided with
hardware counters to measure the traffic, and in particular, the
number of injected and deflected flits per unit of time, namely
flit injection rate, inj ratec, and flit deflection rate defl ratec,
respectively. Thus, the network intensity of an application is
computed (as in [18]) by averaging the value of inj ratec of
all the cores where the application is mapped on:

intappl =

∑
c∈appl inj ratec

|appl|
(15)

Similarly, the network congestion of an application is computed
(as in [18]) by averaging the the value of defl ratec of all the
cores where the application is mapped on:

congappl =

∑
t∈appl defl ratec

|appl|
(16)

The performance-power metric [37] estimates the average
performance loss (gain) when decreasing (increasing) power con-
sumption of the set of cores executing an application when the VF
of the cores is varied from the current value freqc to a new value
freq∗c . The metric is computed as:

Dappl
perf−power =

∑
c∈appl

perf∗
c −perfc

power∗c−powerc

|appl|
(17)

where powerc is the current power of a core c, perfc is the
current performance of core c, estimated by multiplying the
average core utilization by the core frequency, freqc. The future
power and performance values for each core, perf∗

c and power∗c ,
respectively, are estimated as:

perf∗
c = perfc ·

freq∗c
freqc

(18)

power∗c = powerc ·
freq∗c
freqc

·
(
V ∗
dd c

Vdd c

)2

(19)

where Vdd c and V ∗
dd c are the voltage levels associated to the two

considered frequency levels of core c.
Finally, the reliability aspect is taken into account by means

of a DVFS reliability cost RCV F
app computed on the basis of the

effects of a DVFS variation on the cores’ SF, as follows:

RCV F
appl =

∑
c∈appl

SFV F
c (20)

where SFV F
c is the SF of each core allocated to the application

based on Equation 11, computed on the basis of the temperature
due to DVFS change. The overall cost function is computed
by combining the four metrics for each application appl and
summing up the results for all the running applications as follows:

V Fcost =
∑
appl

[
Dappl

perf power

congappl · intappl ·RCV F
appl

]sign(Perror)

(21)

Algorithm 4 Reliability-aware DPM
Input:
- Perror : power error
- Pbudget: power budget
- VFin: current VF levels of the cores
- appls: list of running applications
- featuresappls: list of pre-profiled applications features
- REM, RTC: vectors of cores reliability
Internal registers:
- P t−1

error : contains Perror of the previous control period
Constants:
- Pth: power threshold
Body:
1: if |Perror − P t−1

error| > Pth then
2: VF← VFin

3: repeat
4: V Fchanged← false
5: VFlast iter ← VF
6: for appl ∈ appls do
7: V Fcost ← estimate VFcost(VF, featuresappls, REM,

RTC)
8: if Perror > 0 then
9: VFnew ← down-scale(appl, VF)

10: else
11: VFnew ← up-scale(appl, VF)
12: V Fnew

cost ← estimate VFcost(VFnew , featuresappls, REM,
RTC)

13: if V Fnew
cost < V Fcost then

14: VF← VFnew

15: V Fchanged← true
16: P predicted

error = estimate power(VF, featuresappls) − Pbudget

17: if Perror > 0 then
18: if P predicted

error ≤ 0 then
19: EXIT← true
20: else if V Fchanged = false then
21: kill an app()
22: EXIT← true
23: else
24: if P predicted

error ≤ 0 and V Fchanged = false then
25: EXIT← true
26: else if P predicted

error > 0 then
27: VF← VFlast iter

28: EXIT← true
29: until EXIT = false
30: apply VF(VF)
31: P t−1

error ← Perror

In the formula, Perror represents the difference between the cur-
rent power consumption and the power budget (refer to Figure 4).
Thus, sign(Perror) = 1 if Perror ≥ 0 and sign(Perror) = −1
otherwise. As a result, this sign function makes the cost function
value be reversed when Perror < 0, i.e., in the up-scaling process
that is performed when the current power consumption of the
system is below the given power budget.

Algorithm 4 shows the proposed reliability-aware DPM policy.
The algorithm is executed at each fixed time interval (500ms) to
check if there is a significant variation in the power consumption
or in the power budget (in case TSP is used), and, therefore, to
avoid performing DVFS changes every time there is a fluctuation
in the power consumption. To do so, the absolute difference
between the current Perror and the one at the previous instant
of time P t−1

error is checked to be greater than a given threshold
(Line 1). Starting from the current cores VF levels (Line 2) a
hill-climbing algorithm is used to iteratively select an application
on which DVFS is changed. This heuristic allows to find a near
optimal solution in a reduced time by performing selections based
on the estimated V Fcost. At each hill-climbing iteration, all run-
ning applications are analyzed (Lines 6–15). For each application,
the algorithm first estimates the V Fcost. Then, it computes new
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TABLE 1
Baseline Processor, Cache, Memory, and Network Configuration

Processor spec 16nm technology, Core type: Niagara, TDP=90W, 2 GHz processor, 128-entry instruction window
Fetch/Exec/Commit width 2 instructions per cycle in each core; only 1 can be a memory operation
Memory Management 4KB physical and virtual pages, 512 entry TLBs, CLOCK page allocation and replacement
L1 Caches 32KB per-core (private), 4-way set associative, 64B block size, 2-cycle latency, split I/D caches, 32MSHRs
L2 Caches 256KB per core (private), 16-way set associative, 64B block size, 6-cycle bank latency, 32MSHRs, directories are co-located

with the memory controller
Main Memory Network 16GB DDR3-DRAM, up to 16 outstanding requests per-core, 160 cycle access, 4 on-chip Memory Controllers
Network Router 2-stage wormhole switched, virtual channel flow control, 4 VCs per Port, 4 flit buffer depth, 4 flits per data packet, 1 flit per

address packet. Network Interface: 16 FIFO buffer queues with 4 flit depth
Network Topology 8x8/10x10/12x12 mesh, 128 bit bi-directional links (32GB/s)
Chip area 109mm2 (8x8), 170mm2 (10x10), 245mm2 (12x12)
Power budget TDP={90W, 110W, 130W} or TSP

candidate VF levels of the application cores by means of a one
level of down-scaling, if a violation of the power budget occurred,
or up-scaling, if the power budget is underutilized (Lines 7–11).
If the cost function V Fnew

cost estimated for the new VFnew list is
less than the cost function in the previous step of the iteration,
VF is replaced with that new list (Lines 12–15). Then, the
power of the selected VF levels is estimated and its difference
with the power budget is computed, namely P predicted

error (Line 12).
Based on P predicted

error , the algorithm decides whether to continue
the hill climbing or not. In case of down-scaling (Lines 17–22),
the algorithm exits when the newly predicted error is lower than
zero or if it is still larger than zero but no VF tuning has been
performed; in the latter case, one of the applications (the younger
one) is killed to recover from the power violation. In case of
up-scaling (Lines 23–28), the algorithm exits when no further
VF change is done or during the last iteration of the algorithm
P predicted
error becomes greater than 0; in the latter case, VF changes

are undone to the values of the previous iteration (Line 27).
Finally, after the loop, the selected VF levels are applied.

6 EXPERIMENTAL RESULTS

The approach has been experimentally evaluated in a software
framework based on Noculator [14], a shared-memory NoC-based
CMP simulator using Intel PIN tool. The CMP has been modeled
based on a Niagara2 processor with SPARC architecture as re-
ported in Table 1. Physical scaling parameters and power modeling
and TDP were gathered from McPAT [38] and Lumos [39] and for
the steady-state thermal model Hotspot [40] has been integrated
in the simulator. EM has been modeled as in [9] by fitting AEM

to have a MTTFEM = 10 years in a steady state condition
at T = 60◦C. Similarly, TC has been modeled as in [12] by
characterizing ATC to have a MTTFTC = 10 years in a steady
state condition with δT = 20◦C, TMax = 70◦C, ∆t = 1 hour
and m = 10. Finally, we defined three different architectures: 8x8,
10x10 and 12x12, respectively. Larger single-chip architectures
would not be realistic given the considered technological param-
eters. For each architecture we considered four different power
budgets: TDP={90W, 110W, 130W} and TSP.

The executed workload is composed of several instances of
the thirteen applications included in the multi-threaded PARSEC
benchmark suite [41] that are randomly selected and issued into
the system at run-time. We generated three different workloads,
namely heavy, normal, and light, based on the rate of incoming
applications. For heavy workload, the rate of incoming application
is set in a way such that approximately more than 85% of the cores
are busy at the moment. Similarly, for normal and light workloads,
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Fig. 6. Effect of the different reliability-aware units on core MTTF w.r.t.
EM and TC for the 8x8 architecture.
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Fig. 7. Statistical analysis of the effect of the different reliability-aware
units on core MTTF w.r.t. EM and TC for the 8x8 architecture.

the application entering rate is adjusted to have approximately
60% and 40% of cores busy at the moment, respectively.

The described tool has been used to simulate the system
activity for approximately 20 hours in the various described
configurations. Then, the MTTFs have been computed for each
simulation according to the reliability model described in Sec-
tion 2.2 by assuming the working conditions to be stationary for
the entire lifetime (as assumed in various past works, e.g. [32], [9],
[19]). More in detail, for EM the average aging rate of the entire
simulation has been computed during the simulation by means of
Equation 3, and Equation 5 is used to compute MTTF; similar
computations are carried out for TC. Results of the experimental
sessions are discussed in the following sections.

6.1 Effect of each reliability-aware units on MTTF

In a first experiment we analyzed the beneficial effect of each
single reliability-aware units on system lifetime. To do so, we ran
the experiment on the 8x8 architecture with the heavy workload
and TDP = 90W various times enabling a single unit at time.
For the sake of completeness we also ran the baseline approach
and the overall proposed approach, i.e., with all reliability-aware
units disabled and enabled, respectively.
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Fig. 8. MTTF for 8x8 architecture considering different workload setups
and power budgets.

Figure 6 reports the MTTF of all the cores w.r.t. EM and TC,
while Figure 7 shows the corresponding statistics. As it can be
seen, each proposed reliability-aware unit can separately improve
the overall EM and TC reliability comparing to the baseline. The
reliability-aware mapping has a significant contribution to improve
both EM and TC. The effect of DPM on balancing both EM and
TC is milder in comparison with mapping. The reason is that with-
out selecting the appropriate core that is happening in mapping
process, DPM cannot contribute in balancing the reliability well.
The effect of scheduling on balancing TC stress is more noticeable
than their effect on balancing EM stress, in contrast with the effect
of mapping. This is due to the fact that scheduling acts with
a more fine-grain approach devoted to reducing the temperature
fluctuations on each single core than the mapping and DPM that
are more coarse-grained strategy. However, such short-term event
does not affect EM stress much.

6.2 Analysis for different workloads and TDPs/TSP
In a second experiment, we evaluated how the proposed approach
behaves with different workload intensities and power budges on
the three considered architectures. The statistical analysis of the
core MTTFs for 8x8, 10x10, and 12x12 architectures are reported
in Figures 8, 9, and 10, respectively, for both EM and TC. Plots
are not reported for the sake of space.

By decreasing the workload from heavy to light for all con-
figurations and TDPs the EM and TC reliability improves. For
example for 8x8 configuration and TDP=90 the EM and TC
reliability (in particular the minimum cores’ MTTF) improves
25% and 20%, respectively. The improvement of EM gets worse
for lighter workloads compared with TC. For example for 8x8
configuration, obtained EM improvement is 25%, 18%, and 18%
for heavy, normal, and light workload respectively. However,
TC improvements does not follow as such and are 20%, 29%,
and 31%. The same trend can be seen for 10x10 and 12x12
configurations. The reason for this is that with lighter workloads,
reliability-aware units are not proportionally free enough to ma-
nipulate the temperature of the chip but are performing well to
manage temperature fluctuation due to existence of vacant areas
and possible temperature fluctuations in comparison against the
baseline (without reliability-aware management).

By increasing TDP from 90W to 130W EM and TC reliability
for 8x8 architecture decreases 12% and 18%, respectively, for the
heavy workload; 14% and 27% for normal workload; and 10%
and 15% for light workload. Similar trend can be observed for
10x10 and 12x12 architectures. Even though with higher TDP the
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Fig. 9. MTTF for 10x10 architecture considering different workload se-
tups and power budgets.
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Fig. 10. MTTF for 12x12 architecture considering different workload
setups and power budgets.

aging rate exponentially increases, we noted that by increasing
the TDP TC reliability gets better improvement comparing to
EM. In fact, with higher TDP the degree of freedom for mapping
decreases due to higher core utilization. This gives less freedom
to the mapping unit to select different vacant areas to balance the
reliability. However, due to high overall power consumption, the
DPM unit is more triggered to decrease temperature fluctuations.
Moreover, by increasing the TDP, the effect of the scheduler on
balancing TC is more than EM since the throttling policy of power
management reduces the temperature fluctuations that happens
during the scheduling process.

Results related to TSP shows that for the 8x8 architecture of
cores the aging is slightly slow; in fact, TSP is adjusted based
on number and location of active cores in run-time. On the other
hand, the 12x12 architecture ages faster when using TSP due to
higher dedicated power budgets, leading at the same time to higher
performance. For example, comparing to the obtained results for
heavy workload, TDP=90W, in 8x8 configuration, using TSP gives
slightly similar average EM and TC aging while with the similar
settings of TDP and workload, for 10x10 and 12x12 architectures
the EM (TC) aging gets worse by 6% (9%) and 25% (28%).

It is also interesting to analyze how MTTF varies in relation-
ship with the number of architecture cores at a fixed TDP. When
TDP is low, larger architectures age slower; in fact, the strict power
budget forces a larger number of cores to be idle, causing at the
same time a performance loss. For example comparing TDP=90W
case for heavy workload experiment, obtained average values for
EM (TC) for 10x10 and 12x12 configurations gets better 6%
(8%) and 22% (13%) respectively comparing to 8x8 configuration.
However, with the larger value for power budget, e,g., while using
TDP=130W or TSP, the configuration with larger number of cores
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Fig. 11. MTTF comparison against past approaches for 8x8 architecture.

slightly ages faster (around 1-2%). This is mainly due to the higher
effect of neighbor temperatures in 2D mesh environment for larger
number of cores; the ratio of cores with less than four neighbors
to all the cores is higher value for smaller number of cores.

6.3 Comparison against state-of-the-art approaches

In a third experiment, we compared the proposed approach against
the most representative state-of-the-art works: i) the EM-aware
approach in [9], ii) the TC-aware approach in [12], and iii) the
EM/TC-aware approach in [32]. The baseline is also included for
the sake of comparison. Experiments have been carried out on
the three considered architectures running the heavy workload.
First two rows of Figures 11 show the cores’ MTTF for the
various approaches w.r.t. EM, TC, and the last row the overall
value, respectively, for the 8x8 architecture. The overall MTTF
has been obtained for each core as the minimum between the two
contributions (as in [9]). Figure 12 shows the statistical analysis
for the results for all the three architecture. MTTF plots for 10x10
and 12x12 architectures have been omitted for the sake of space.

Results show that the proposed approach outperforms the other
techniques by improving MTTF for both EM and TC. For the 8x8
architecture, the proposed approach presents an improvement of
the minimum MTTF w.r.t. the reliability-agnostic baseline by 35%
for the only EM, 37% for the only TC, and 35% for both types
of aging mechanisms together, respectively. Statistics on average
MTTF are 22%, 26%, and 30%, respectively. It can be seen that
even through TC-aware technique in [12] results in a better MTTF
for the only TC, the weak EM reliability improvement in this
technique significantly affects the overall MTTF value. Also it
can be noticed that the proposed approach outperforms in both
EM and TC in comparison with EM-aware technique in [9]. The
reason for improvement in EM based MTTF is that in [9] only EM
reliability is considered partially in mapping and DPM units while
the scheduling unit features no reliability-aware strategy. Thus, it
may be noticed from the third line of plots that [9], [12] have no
actual improvement of the overall MTTF w.r.t. the baseline.

In comparison with [32], the only one considering both EM
and TC, our approach applied to the 8x8 architecture gains 25%,
27%, 25% minimum MTTF based on EM, TC, and both aging
mechanisms together, respectively. Such improvements slightly
decrease when the architecture size increases; in the 12x12 archi-
tecture, minimum MTTF improves by 17% for EM and 20% for
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Fig. 12. Statistical analysis of MTTF comparison against past ap-
proaches for different architectures.

TC. The approach in [32] is quite simplistic and considers only
the thread scheduling without handling reliability-aware multi-
threaded application mapping or DPM. Moreover, in the thread
scheduling, it only performs basic core discrimination with the
current reliability and temperature; at opposite, our approach per-
forms an advanced decision marking based on both short-term and
long-term analysis. Due to such weaknesses, this approach obtains
worse results in EM mitigation than [9] and in TC mitigation
than [12]. Finally, results reported in Figure 12 for the 10x10 and
12x12 architectures confirm all the drawn conclusions.

6.4 Effect of the proposed approach on performance
We analyzed the impact of the proposed reliability-aware approach
on system performance. Figure 13 shows the normalized through-
put of the proposed approach in comparison with the selected
baseline for different workloads, architectures and power budgets.
The performance penalty is actually negligible; this confirms that
the proposed approach orchestrates decisions by properly taking
into account at the same time reliability aspects and performance
ones, by co-optimizing metrics referred to both aspects. The other
reason is that considering the reliability metric is not necessarily
in contrast with performance metric, but is sorts of metrics that
in long-term shapes and can be considered as a variable that is
independent from the performance metrics. Another important fact
is that the penalty of the reliability-aware resource management
slightly increases when the workload is intensive or the TDP is
higher. In these cases the system experiences more stress; conse-
quently, the proposed reliability approach puts some additional
limitations slightly reducing the action space for performance
optimization w.r.t. the baseline. Similar scenario occurs when TSP
is used in 12x12 architecture since it sets a power budget on
average larger than the maximum considered TDP (i.e., 130W).

6.5 Performance overhead of the proposed approach
Finally, since the proposed management approach is assumed to
run on the same controlled CMP, we measured its overhead on the
system activity. Practically, we used the described simulator to run
also the four units composing the approach and measure execution
times; average results for the three considered architectures are
reported in Table 2. The overall overhead can be thus computed
in terms of CPU utilization, i.e., the ratio between the controller
execution time and the invocation period in percentage, since
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Fig. 13. Throughput analysis for the different workloads and TDPs/TSP.

this represent the percentage of compute power “stolen” to the
workload. The frequency of invocation of each unit is reported in
the second column of Table 2; for the Reliability Analysis unit and
the Reliability-aware Scheduling one the call period is fixed and
the obtained utilization is therefore equal to 0%.

Regarding to the other two units which call is event-triggered,
the invocation frequency depends on the workload, and, in par-
ticular, on the average execution time of the various applications,
and secondarily, the Reliability-aware DPM unit on the possible
execution phases of the single applications. In the experiments,
the execution times of the applications were on average equal
to 30 minutes and on average 6/7 applications were running
concurrently; in this configuration, we measured the Reliability-
aware Mapping unit to be invoked every 5 minutes and the
Reliability-aware DPM unit every 30 seconds/1 minute. Thus, the
CPU utilization of the two units is close to 0%.

As a final note, even if Table 2 shows that execution times
grow with the increase of the architecture size, the compute power
of the architecture increase due to the larger number of cores as
well. This allows us to confirm that the overhead of the approach,
in terms of CPU utilization, is negligible.

7 CONCLUSIONS

This paper has presented a novel reliability-aware run-time re-
source management approach for CMPs aimed at improving
architecture lifetime reliability w.r.t. multiple aging mechanisms,
while maintaining same performance level of the state-of-the-art
reliability-unaware counterpart and satisfying the power budget.
The approach offers a fine-grained control aware of the aging
status of the various cores in mapping, scheduling and power
management, capable at dealing with both EM, mainly caused
by high temperature levels, and TC, whose main driver is the
temperature variations. Experimental results have shown the ap-
proach to outperform past works focusing on either a single aging
mechanism or both the two ones at least by 17% and 20% w.r.t.
EM and TC stress, respectively. Future work will extend the
approach to work with heterogeneous system architectures.

TABLE 2
Execution time of the various units of the proposed approach.

Unit Call frequency Execution time (us)
8x8 10x10 12x12

Reliability Analysis Periodic (1h) 9.6 15.0 21.6
RA Mapping Event based 512.28 1116.6 2301.48

(execution request)
RA Scheduling Periodic (100ms) 32.2 53.8 77.9
RA DPM Event based (power 557.0 1127.8 2150.46

variation > 2.5W)
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