5 research outputs found

    IL-22 contributes to TGF-β1-mediated epithelial-mesenchymal transition in asthmatic bronchial epithelial cells

    Get PDF
    Background: Allergic asthma is characterized by airway inflammation in response to antigen exposure, leading to airway remodeling and lung dysfunction. Epithelial-mesenchymal transition (EMT) may play a role in airway remodeling through the acquisition of a mesenchymal phenotype in airway epithelial cells. TGF-β1 is known to promote EMT; however, other cytokines expressed in severe asthma with extensive remodeling, such as IL-22, may also contribute to this process. In this study, we evaluated the contribution of IL-22 to EMT in primary bronchial epithelial cells from healthy and asthmatic subjects.Methods: Primary bronchial epithelial cells were isolated from healthy subjects, mild asthmatics and severe asthmatics (n=5 patients per group). The mRNA and protein expression of epithelial and mesenchymal cell markers and EMT-associated transcription factors was evaluated following stimulation with TGF-β1, IL-22 and TGF-β1+IL-22.Results: Primary bronchial epithelial cells stimulated with TGF-β1 underwent EMT, demonstrated by decreased expression of epithelial markers (E-cadherin and MUC5AC) and increased expression of mesenchymal markers (N-cadherin and vimentin) and EMT-associated transcription factors. IL-22 alone had no effect on epithelial or mesenchymal gene expression. However, IL-22+TGF-β1 promoted the expression of some EMT transcription factors (Snail1 and Zeb1) and led to a more profound cadherin shift, but only in cells obtained from severe asthmatics.Conclusion: The impact of IL-22 on airway epithelial cells depends on the cytokine milieu and the clinical phenotype of the patient. Further studies are required to determine the molecular mechanism of IL-22 and TGF-β1 cooperativity in driving EMT in primary human bronchial epithelial cells

    Relationship between peripheral airway function and patient-reported outcomes in COPD: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Health status, dyspnea and psychological status are important clinical outcomes in chronic obstructive pulmonary disease (COPD). However, forced expiratory volume in one second (FEV<sub>1</sub>) measured by spirometry, the standard measurement of airflow limitation, has only a weak relationship with these outcomes in COPD. Recently, in addition to spirometry, impulse oscillometry (IOS) measuring lung resistance (R) and reactance (X) is increasingly being used to assess pulmonary functional impairment.</p> <p>Methods</p> <p>We aimed to identify relationships between IOS measurements and patient-reported outcomes in 65 outpatients with stable COPD. We performed pulmonary function testing, IOS, high-resolution computed tomography (CT), and assessment of health status using the St. George's Respiratory Questionnaire (SGRQ), dyspnea using the Medical Research Council (MRC) scale and psychological status using the Hospital Anxiety and Depression Scale (HADS). We then investigated the relationships between these parameters. For the IOS measurements, we used lung resistance at 5 and 20 Hz (R5 and R20, respectively) and reactance at 5 Hz (X5). Because R5 and R20 are regarded as reflecting total and proximal airway resistance, respectively, the fall in resistance from R5 to R20 (R5-R20) was used as a surrogate for the resistance of peripheral airways. X5 was also considered to represent peripheral airway abnormalities.</p> <p>Results</p> <p>R5-R20 and X5 were significantly correlated with the SGRQ and the MRC. These correlation coefficients were greater than when using other objective measurements of pulmonary function, R20 on the IOS and CT instead of R5-R20 and X5. Multiple regression analyses showed that R5-R20 or X5 most significantly accounted for the SGRQ and MRC scores.</p> <p>Conclusions</p> <p>IOS measurements, especially indices of peripheral airway function, are significantly correlated with health status and dyspnea in patients with COPD. Therefore, in addition to its simplicity and non-invasiveness, IOS may be a useful clinical tool not only for detecting pulmonary functional impairment, but also to some extent at least estimating the patient's quality of daily life and well-being.</p

    ヒト気道上皮細胞におけるLipopolysaccharideによるconnective tissue growth factor遺伝子発現の亢進

    Get PDF
    京都大学0048新制・課程博士博士(医学)甲第15570号医博第3473号新制||医||982(附属図書館)28091京都大学大学院医学研究科内科系専攻(主査)教授 伊達 洋至, 教授 戸口田 淳也, 教授 真鍋 俊明学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDA

    Fibroblast-epithelial cell interactions drive epithelial-mesenchymal transition differently in cells from normal and COPD patients

    No full text
    Epithelial-to-mesenchymal transition (EMT), which involves changes in cellular morphology of highly polarized epithelial cells and the gain of mesenchymal cell phenotype with migratory and invasive capacities, is implicated in smoking-related chronic obstructive pulmonary disease (COPD). However, the interactions of fibroblasts and epithelial cells and the participation of fibroblasts in the EMT processes in COPD are poorly understood. Here, we investigated the hypothesis that EMT is active in human bronchial epithelial (HBE) cells of COPD patients, and that mediators secreted by lung fibroblasts from COPD patients induce EMT
    corecore