35 research outputs found

    776-4 Intact cNOS-NO-cGMP Pathway in the Failing Human Heart

    Get PDF
    Nitric oxide (NO) is a potent endothelium-derived relaxing factor which also may modulate cardiac myocyte inotropism and growth via increases in cGMP. While both the constitutive (cNOS) and inducible (iNOS)forms of nitric oxide synthase have been detected in mammalian hearts, the overall presence and activity of the cNOS-NO-cGMP pathway in the normal and failing human heart remains poorly defined. The present studies were designed to investigate the cNOS-NO-cGMP pathway in normal and failing human atrial and ventricular myocardium and to determine plasma NO and cGMP in the presence and absence of CHF. Myocardial tissue and plasma were obtained from five end-stage heart failure patients undergoing cardiac transplantation and five cardiac donors. Normal plasma NO and cGMP were also determined in normal humans without disease. cNOS production and localization were determined utilizing Northern blot analysis, in situ hybridization and immunohistochemistry with probes for endothelial-NOS and brain-NOS. Plasma and tissue NO were measured by nitrate determination utilizing chemiluminescence. Northern blot analysis and in situ demonstrated cNOS to be present and localized to atrial and ventricular myocytes in equal concentrations and distributions in normal and failing hearts. Tissue NO as determined by nitrate concentration was detectable and equal in normal and failing hearts while plasma NO concentration tended to be increased in CHF patients. Cardiac tissue cGMP paralleled tissue NO, although, plasma cGMP concentration was significantly increased in CHF patients compared with normal subjects. The present studies demonstrate that cNOS mRNA and cNOS protein are present in the normal human heart and this cNOS-NO-cGMP pathway is preserved in the failing human heart. These studies suggest that this paracrine and autocrine pathway may continue to function in the control of myocardial function in the failing human myocardium

    Matrix Metalloproteinases in Non-Neoplastic Disorders

    No full text
    The matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. There are at least 23 members of MMPs ever reported in human, and they and their substrates are widely expressed in many tissues. Recent growing evidence has established that MMP not only can degrade a variety of components of extracellular matrix, but also can cleave and activate various non-matrix proteins, including cytokines, chemokines and growth factors, contributing to both physiological and pathological processes. In normal conditions, MMP expression and activity are tightly regulated via interactions between their activators and inhibitors. Imbalance among these factors, however, results in dysregulated MMP activity, which causes tissue destruction and functional alteration or local inflammation, leading to the development of diverse diseases, such as cardiovascular disease, arthritis, neurodegenerative disease, as well as cancer. This article focuses on the accumulated evidence supporting a wide range of roles of MMPs in various non-neoplastic diseases and provides an outlook on the therapeutic potential of inhibiting MMP action

    Inhibitory Effects of Eicosapentaenoic Acid on Vascular Endothelial Growth Factor-Induced Monocyte Chemoattractant Protein-1, Interleukin-6, and Interleukin-8 in Human Vascular Endothelial Cells

    No full text
    Vascular endothelial growth factor (VEGF) induces monocyte chemoattractant protein-1 (MCP-1) and plays an important role in vascular inflammation and atherosclerosis. We investigated the mechanisms of VEGF-induced MCP-1 expression and the effects of eicosapentaenoic acid (EPA) in human umbilical vein endothelial cells (HUVECs). Real-time reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) demonstrated that VEGF enhanced MCP-1 gene expression and protein secretion in HUVECs. Western immunoblot analysis revealed that VEGF induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and inhibitor of nuclear factor (NF)-κB (IκB). Treatment with pharmacological inhibitors of p38 MAPK (SB203580) or NF-κB (BAY11-7085) significantly suppressed VEGF-induced MCP-1 in HUVECs. EPA inhibited VEGF-induced MCP-1 mRNA, protein secretion, phosphorylation of p38 MAPK, and the translocation of phospho-p65 to the nucleus. Additionally, VEGF also stimulated gene expressions of interleukin (IL)-6 and IL-8, which were suppressed by SB203580, BAY11-7085, and EPA. The present study has demonstrated that VEGF-induced activation of MCP-1, IL-6, and IL-8 involves the p38 MAPK and NF-κB signaling pathways and that EPA inhibits VEGF-induced MCP-1, IL-6, and IL-8 via suppressing these signaling pathways. This study supports EPA as a beneficial anti-inflammatory and anti-atherogenic drug to reduce the VEGF-induced activation of proinflammatory cytokine and chemokines

    Cardiotrophin-1 induces matrix metalloproteinase-1 in human aortic endothelial cells.

    Get PDF
    Rupture of an atherosclerotic plaque is a key event in the development of cardiovascular disorders, in which matrix metalloproteinase-1 (MMP-1) plays a crucial role by degradation of extracellular matrix resulting in plaque instability. Cardiotrophin-1 (CT-1), a member of interleukin-6-type proinflammatory cytokines, has potent cardiovascular actions and is highly expressed in vascular endothelium, however its role in atherosclerosis has not been fully elucidated to date. The present study was designed to investigate whether CT-1 induces MMP-1 in human aortic endothelial cells (HAECs). Ribonuclease protection assay demonstrated that MMP-1 gene level in HAECs was enhanced by the treatment of CT-1 in a dose- and time-dependent manner. Immunocytochemical staining, Western immunoblot analysis and enzyme-linked immunosorbent assay revealed that CT-1 augmented MMP-1 protein synthesis and secretion. MMP-1 activity assay revealed that MMP-1 present in the supernatant of HAECs was exclusively precursor form. Casein zymography disclosed proteolytic activity in the supernatant of HAECs, which was enhanced by CT-1 treatment. Furthermore, pharmacological inhibitor study indicated the important roles of extracellular signal-regulated kinase (ERK) 1/2, p38 mitogen-activated protein (MAP) kinase, c-Jun N-terminal kinase (JNK) and Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathways in mediating CT-1-induced MMP-1 gene and protein expression. These data reveal for the first time that CT-1 induces the proteolytic potential in HAECs by upregulating MMP-1 expression through ERK1/2, p38 MAP kinase, JNK and JAK/STAT pathways, and suggest that CT-1 may play an important role in the pathophysiology of atherosclerosis and plaque instability

    Inhibitory Effects of Simvastatin on IL-33-Induced MCP-1 via the Suppression of the JNK Pathway in Human Vascular Endothelial Cells

    No full text
    An alarmin, interleukin (IL)-33 is a danger signal that causes inflammation, inducing chemotactic proteins such as monocyte chemoattractant protein (MCP)-1 in various cells. As statins have pleiotropic actions including anti-inflammatory properties, we investigated the effects of simvastatin on IL-33-induced MCP-1 expression in human umbilical vein endothelial cells (HUVECs). HUVECs were stimulated with IL-33 in the presence or absence of simvastatin. Gene expression and protein secretion of MCP-1, phosphorylation of mitogen-activated protein kinase (MAPK), nuclear translocation of phosphorylated c-Jun, and human monocyte migration were investigated. Immunocytochemical staining and Western immunoblot analysis revealed that IL-33 augmented MCP-1 protein expression in HUVECs. Real-time reverse transcription–polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) showed that IL-33 significantly increased MCP-1 mRNA and protein secretion, which were suppressed by c-jun N-terminal kinase (JNK) inhibitor SP600125 and p38 MAPK inhibitor SB203580. Simvastatin inhibited IL-33-induced MCP-1 mRNA, protein secretion, phosphorylation of JNK and c-Jun. Additionally, the IL-33-induced nuclear translocation of phosphorylated c-Jun and THP-1 monocyte migration were also blocked by simvastatin. This study demonstrated that IL-33 induces MCP-1 expression via the JNK and p38 MAPK pathways in HUVECs, and that simvastatin inhibits MCP-1 production by selectively suppressing JNK. Simvastatin may inhibit the progression of IL-33-induced inflammation via suppressing JNK to prevent MCP-1 production

    Interleukin-33 induces interleukin-8 expression via JNK/c-Jun/AP-1 pathway in human umbilical vein endothelial cells

    No full text
    <div><p>Interleukin (IL)-33 is a member of the IL-1 cytokine family with dual functions as a traditional cytokine and as a transcriptional regulator. We recently reported that IL-33 up-regulated growth regulated oncogene (GRO)-α/CXCL1 expression in human vascular endothelial cells. The aim of this study was to investigate the effect of IL-33 on the expression of IL-8/CXCL8, another member of the CXC-chemokine family, and to elucidate its signaling pathways in human umbilical vein endothelial cells (HUVECs). Immunocytochemical staining and Western immunoblot analysis revealed that IL-33 augmented IL-8 protein expression in HUVECs. Real time reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) showed that IL-33 significantly increased IL-8 mRNA and secretion in a dose- and time-dependent manner. IL-33 preferentially stimulated proliferating subconfluent cells, and increased IL-8 secretion to a higher level compared with confluent cells. IL-33 also stimulated phosphorylations of c-Jun N-terminal kinase (JNK) and c-Jun, and enhanced activator protein (AP)-1 DNA-binding activity, all of which were suppressed by SP600125, a JNK inhibitor. Moreover, IL-33-induced IL-8 mRNA and secretion were also suppressed by SP600125. Transfection of c-Jun small interfering RNA into cultured HUVECs significantly reduced the IL-33-induced increase in IL-8 secretion from HUVECs. The present study demonstrates that IL-33 induces IL-8 expression via JNK/c-Jun/AP-1 pathway in human vascular endothelial cells, and provides a new insight into the role of IL-33-induced IL-8 in the pathophysiology of atherosclerosis and vascular inflammation.</p></div
    corecore