72 research outputs found

    Terrestrial Reserve Networks Do Not Adequately Represent Aquatic Ecosystems

    Full text link
    Las áreas protegidas son una piedra angular de la conservación y han sido diseñadas principalmente alrededor de atributos terrestres. Las especies y ecosistemas dulceacuícolas se encuentran en peligro, pero la efectividad de las áreas protegidas existentes para representar las características dulceacuícolas es poco conocida. Utilizando las aguas interiores de Michigan como un caso de prueba, cuantificamos la cobertura de cuatro atributos dulceacuícolas clave (humedales, zonas ribereñas, recarga de agua subterránea y especies raras) en las tierras conservadas y las comparamos con la representación de los atributos terrestres. Los humedales estaban incluidos en las áreas protegidas más a menudo que lo esperado por azar, pero las zonas ribereñas estuvieron insuficientemente representadas en todas las tierras protegidas (GAP1–3), particularmente en manantiales y ríos grandes. Sin embargo, las zonas ribereñas estuvieron bien representadas en las tierras con protección estricta (GAP 1–2) debido a la contribución del Programa Nacional de Ríos Silvestres y Escénicos. La representación de áreas de recarga de aguas subterráneas generalmente fue proporcional al área de la red de reservas dentro de cuencas hidrológicas, aunque un sitio importante de recarga asociado con algunos de los ríos más valiosos en Michigan estaba casi totalmente desprotegido. La representación de especies en áreas protegidas difirió significativamente entre las especies acuáticas obligadas, de humedales y terrestres, con una representación generalmente mayor para las especies terrestres y menor para las acuáticas. Nuestros resultados ilustran la necesidad de evaluar y atender la representación de los atributos dulceacuícolas dentro de las áreas protegidas y el valor de ampliar el análisis de brechas y otras evaluaciones de áreas protegidas para incluir los procesos ecosistémicos claves que son requisito para la conservación a largo plazo de especies y ecosistemas. Concluimos que las redes de áreas protegidas orientadas al medio terrestre proporcionan una red de seguridad débil para los atributos acuáticos, lo que significa que se requiere planeación y manejo complementario tanto para objetivos de conservación dulceacuícolas como terrestres.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/79138/1/COBI_1460_sm_AppendixS3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/79138/2/COBI_1460_sm_AppendixS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/79138/3/j.1523-1739.2010.01460.x.pd

    Burbot Early Life History Strategies in the Great Lakes

    Full text link
    Burbot Lota lota exhibit four previously known reproductive strategies in the Great Lakes region. In this paper we review those strategies and provide evidence for a fifth one—delayed deepwater spawning. The four known, shallow‐water strategies are as follows: (1) spawning by self‐sustaining, landlocked populations, (2) spawning in tributaries in winter and the exit of larvae to a Great Lake, (3) spawning by residents in a spawning stream with access to a Great Lake, and (4) spawning on unconsolidated and rocky areas in shallow water in winter in the lake proper. Resident, landlocked populations exist in some Michigan and Wisconsin rivers (e.g., the Muskegon River in Michigan). The evidence for winter tributary spawning is the appearance of newly hatched Burbot in the St. Marys and Bark rivers during April–June. Evidence for Burbot juveniles leaving spawning streams is U.S. Fish and Wildlife Service tributory mouth trap data. The evidence for winter nearshore spawning comes from power plant monthly entrainment studies (Mansfield et al. 1983). Our proposed fifth strategy is spring and summer spawning at deep reefs, where there is probably cobble or boulder habitat. Our evidence comes from midlake reefs in Lake Michigan and offshore areas of Lake Huron: (1) we collected adult Burbot at midlake reefs in Lake Michigan, (2) we collected many Burbot larvae (many of which were newly hatched) from Lakes Michigan and Huron in June–August, and (3) we collected a Burbot egg in a PONAR grab in mid‐July from 73 m in southern Lake Huron. An important question remains, namely, which life history strategy provides the highest recruitment success for this species. It may be that adaptability ensures the survival of this important, top‐predator fish during periods of crisis (e.g., encounters with dams, Sea Lamprey Petromyzon marinus predation).Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141895/1/tafs1733.pd

    Surveillance Optimization Project for Chronic Wasting Disease dataset for Michigan, US, 2001-2021

    No full text
    This dataset contains one file containing data from the Michigan Department of Natural Resources. The data was shared with the Cornell Wildlife Health Lab (CWHL) at Cornell University for the purpose of the Surveillance Optimization Project for Chronic Wasting Disease (SOP4CWD). Professionals at the source facility have provided written permission for professionals at the CWHL to post this open data to this persistent eCommons repository. MIDNR_WTD_surveillance_2021.csv: This datafile constitutes records in standardized form depicting the results of chronic wasting disease (CWD) testing of white-tailed deer (Odocoileus virginianus) in Michigan, US for hunting seasons from 2001-02 to 2020-21, as completed by wildlife health diagnosticians at (or in partnership with) the Michigan Department of Natural Resources.The SOP4CWD project was funded by Multistate Conservation Grant Program # F21AP00722-01; Michigan Disease Initiative # RC109358; Alabama Department of Conservation and Natural Resources; Florida Fish and Wildlife Conservation Commission; Tennessee Wildlife Resources Agency; New York State Department of Environmental Conservation; and Virginia Department of Natural Resources

    Biennial report.

    No full text
    Mode of access: Internet.Continuation of the reports of the Public Domain Commission, Geological Survey, Game, Fish and Forestry Dept., State Board of Fish Commissioners, and the State Park Commission

    Michigan natural resources.

    No full text
    Mode of access: Internet

    Ecorse River water quality study : May-July, 1969.

    No full text
    "August, 1969."Includes bibliographical references (p. 37).Mode of access: Internet

    Hydrogeology and effects of tailings basins on the hydrology of Sands plain, Marquette County, Michigan /

    No full text
    One folded map in pocket.Spine title: Hydrogeology of Sands plain, Marquette County, Michigan.Bibliography: p. 75-77.Mode of access: Internet

    A Water and Land Resource Plan for the Kalamazoo-Black-Macatawa-Paw Paw Rivers Basin

    No full text
    Excerpts: The overall objective of this Study was to assemble a water and land resource plan that reflected the concerns of the people in the Basin. To help accomplish this, Citizens Advisory Council and the County Task Forces listed their concerns in the initial phase of the Study. These lists showed a strong desire to protect and improve the environment and to encourage a limited amount of resource development. The following specific objectives were identified: 1. Increase production efficiency of food and fiber. 2. Increase available recreational opportunities. 3. Protect existing urban property from flooding. 4. Enhance water quality particularly with respect to recreation, fish and wildlife aspects. 5. Protect and manage areas of natural beauty that provide human enjoyment. 6. Enhance fish and wildlife populations by habitat preservation and improvement. 7. Protect especially valuable or outstanding ecological, archeological, and historical resources. The Basin consists of four major hydrologic areas: Kalamazoo River Basin--2,020 square miles; Paw Paw River Basin--445 square miles; Black River Basin--295 square miles; and the Macatawa River Basin--172 square miles. These plus the drainage areas of the small streams that drain into Lake Michigan comprise the 3,002 square mile study area referred to in this report as the Basin. The Basin contains parts of 11 counties. Of the 3,002 square miles in the Basin, 57 percent (1,093,000 acres) is in cropland and pasture. Forest land is the next largest land cover category, consisting of approximately 405,000 acres. The remainder of the Basin consists of urban areas, brushland, wetland, water, and miscellaneous areas
    corecore