180 research outputs found

    Status of neutrino oscillations I: the three-neutrino scenario

    Full text link
    We present a global analysis of neutrino oscillation data within the three-neutrino oscillation scheme, including in our fit all the current solar neutrino data, the reactor neutrino data from KamLAND and CHOOZ, the atmospheric neutrino data from Super-Kamiokande and MACRO, and the first data from the K2K long-baseline accelerator experiment. We determine the current best fit values and allowed ranges for the three-flavor oscillation parameters, discussing the relevance of each individual data set as well as the complementarity of different data sets. Furthermore, we analyze in detail the status of the small parameters theta_13 and Delta_m21^2 / Delta_m31^2, which fix the possible strength of CP violating effects in neutrino oscillations.Comment: 13 pages, LaTeX file using JHEP3, 5 figures included. Talk given at the International Workshop on Astroparticle and High Energy Physics (AHEP-2003), Valencia, Spain, 14-18 October 200

    Sterile neutrino oscillations after first MiniBooNE results

    Get PDF
    In view of the recent results from the MiniBooNE experiment we revisit the global neutrino oscillation fit to short-baseline neutrino data by adding one or two sterile neutrinos with eV-scale masses to the three Standard Model neutrinos, and for the first time we consider also the global fit with three sterile neutrinos. Four-neutrino oscillations of the (3+1) type have been only marginally allowed before the recent MiniBooNE results, and become even more disfavored with the new data (at the level of 4σ4\sigma). In the framework of so-called (3+2) five-neutrino mass schemes we find severe tension between appearance and disappearance experiments at the level of more than 3σ3\sigma, and hence no satistfactory fit to the global data is possible in (3+2) schemes. This tension remains also when a third sterile neutrino is added, and the quality of the global fit does not improve significantly in a (3+3) scheme. It should be noted, however, that in models with more than one sterile neutrino the MiniBooNE results are in perfect agreement with the LSND appearance evidence, thanks to the possibility of CP violation available in such oscillation schemes. Furthermore, if disappearance data are not taken into account (3+2) oscillations provide an excellent fit to the full MiniBooNE spectrum including the event excess at low energies.Comment: 30 pages, 12 figures, minor improvements of text and abstract, summary table added, matches version to be published in Phys. Rev.

    Resurrecting the Dead Cone

    Get PDF
    The dead cone is a well-known effect in gauge theories, where radiation from a charged particle of mass m and energy E is suppressed within an angular size of m/E. This effect is universal as it does not depend on the spin of the particle nor on the nature of the gauge interaction. It is challenging to directly measure the dead cone at colliders, however, since the region of suppressed radiation either is too small to be resolved or is filled by the decay products of the massive particle. In this paper, we propose to use jet substructure techniques to expose the dead cone effect in the strong-force radiation pattern around boosted top quarks at the Large Hadron Collider. Our study shows that with 300/fb of 13-14 TeV collision data, ATLAS and CMS could obtain the first direct evidence of the dead cone effect and test its basic features.Comment: 12 pages, 12 figures; v2: references added; v3: approximate version to appear in PR

    Status of Global Analysis of Neutrino Oscillation Data

    Full text link
    In this talk we discuss some details of the analysis of neutrino data and our present understanding of neutrino masses and mixing. This talk is based on hep-ph/0306001, hep-ph/0306226 and hep-ph/0404085.Comment: 10 pages, LaTeX file using ws-procs9x6, 6 figures included. Talk given by MCGG at the 5th Workshop on "Neutrino Oscillations and their Origin" (NOON2004), Tokyo, Japan, February 11-15, 200

    From ray to spray: augmenting amplitudes and taming fast oscillations in fully numerical neutrino codes

    Full text link
    In this note we describe how to complement the neutrino evolution matrix calculated at a given energy and trajectory with additional information which allows to reliably extrapolate it to nearby energies or trajectories without repeating the full computation. Our method works for arbitrary matter density profiles, can be applied to any propagation model described by an Hamiltonian, and exactly guarantees the unitarity of the evolution matrix. As a straightforward application, we show how to enhance the calculation of the theoretical predictions for experimentally measured quantities, so that they remain accurate even in the presence of fast neutrino oscillations. Furthermore, the ability to "move around" a given energy and trajectory opens the door to precise interpolation of the oscillation amplitudes within a grid of tabulated values, with potential benefits for the computation speed of Monte-Carlo codes. We also provide a set of examples to illustrate the most prominent features of our approach.Comment: 31 pages, 4 figure

    Tracking down hyper-boosted top quarks

    Get PDF
    The identification of hadronically decaying heavy states, such as vector bosons, the Higgs, or the top quark, produced with large transverse boosts has been and will continue to be a central focus of the jet physics program at the Large Hadron Collider (LHC). At a future hadron collider working at an order-of-magnitude larger energy than the LHC, these heavy states would be easily produced with transverse boosts of several TeV. At these energies, their decay products will be separated by angular scales comparable to individual calorimeter cells, making the current jet substructure identification techniques for hadronic decay modes not directly employable. In addition, at the high energy and luminosity projected at a future hadron collider, there will be numerous sources for contamination including initial- and final-state radiation, underlying event, or pile-up which must be mitigated. We propose a simple strategy to tag such "hyper-boosted" objects that defines jets with radii that scale inversely proportional to their transverse boost and combines the standard calorimetric information with charged track-based observables. By means of a fast detector simulation, we apply it to top quark identification and demonstrate that our method efficiently discriminates hadronically decaying top quarks from light QCD jets up to transverse boosts of 20 TeV. Our results open the way to tagging heavy objects with energies in the multi-TeV range at present and future hadron colliders.Comment: 19 pages + appendices, 17 figures; v2: added references, updated cross section tabl

    Robust Cosmological Bounds on Neutrinos and their Combination with Oscillation Results

    Full text link
    We perform a global analysis of cosmological observables in generalized cosmologies which depart from Λ\LambdaCDM models by allowing non-vanishing curvature Ωk≠0\Omega_k\neq 0, dark energy with equation of state with ω≠−1\omega\neq -1, the presence of additional relativistic degrees of freedom ΔNrel\Delta N_{\rm rel}, and neutrino masses ΩΜ≠0\Omega_\nu\neq 0. By combining the data from cosmic microwave background (CMB) experiments (in particular the latest results from WMAP-7), the present day Hubble constant (H0) measurement, the high-redshift Type-I supernovae (SN) results and the information from large scale structure (LSS) surveys, we determine the parameters in the 10-dimensional parameter space for such models. We present the results from the analysis when the full shape information from the LSS matter power spectrum (LSSPS) is included versus when only the corresponding distance measurement from the baryon acoustic oscillations (BAO) is accounted for. We compare the bounds on the neutrino mass scale in these generalized scenarios with those obtained for the 6+1 parameter analysis in ΛCDM+mÎœ\Lambda{\rm CDM}+m_\nu models and we also study the dependence of those on the set of observables included in the analysis. Finally we combine these results with the information on neutrino mass differences and mixing from the global analysis of neutrino oscillation experiments and derive the presently allowed ranges for the two laboratory probes of the absolute scale of neutrino mass: the effective electron neutrino mass in single beta decay and the effective Majorana neutrino mass in neutrinoless ÎČÎČ\beta\beta decay.Comment: 19 pages, 4 figures. Acknowledgments correcte
    • 

    corecore