48 research outputs found

    Sustained hyperosmolarity increses TGF-beta1 and Egr-1 expression in the rat renal medulla.

    Get PDF
    BACKGROUND: Although TGF-ss and the transcription factor Egr-1 play an important role in both kidney fibrosis and in response to acute changes of renal medullary osmolarity, their role under sustained hypo- or hyperosmolar conditions has not been elucidated. We investigated the effects of chronic hypertonicity and hypotonicity on the renal medullary TGF-ss and Egr-1 expression. METHODS: Male adult Sprague Dawley rats (n = 6/group) were treated with 15 mg/day furosemide, or the rats were water restricted to 15 ml/200 g body weight per day. Control rats had free access to water and rodent chow. Kidneys were harvested after 5 days of treament. In cultured inner medullary collecting duct (IMCD) cells, osmolarity was increased from 330 mOsm to 900 mOsm over 6 days. Analyses were performed at 330, 600 and 900 mOsm. RESULTS: Urine osmolarity has not changed due to furosemide treatment but increased 2-fold after water restriction (p < 0.05). Gene expression of TGF-ss and Egr-1 increased by 1.9-fold and 7-fold in the hypertonic medulla, respectively (p < 0.05), accompanied by 6-fold and 2-fold increased c-Fos and TIMP-1 expression, respectively (p < 0.05) and positive immunostaining for TGF-ss and Egr-1 (p < 0.05). Similarly, hyperosmolarity led to overexpression of TGF-ss and Egr-1 mRNA in IMCD cells (2.5-fold and 3.5-fold increase from 330 to 900 mOsm, respectively (p < 0.05)) accompanied by significant c-Fos and c-Jun overexpressions (p < 0.01), and increased Col3a1 and Col4a1 mRNA expression. CONCLUSION: We conclude that both TGF-ss and Egr-1 are upregulated by sustained hyperosmolarity in the rat renal medulla, and it favors the expression of extracellular matrix components

    Why are mineralocorticoid receptor antagonists cardioprotective?

    Get PDF
    Two clinical trials, the Randomized ALdosterone Evaluation Study (RALES) and the EPlerenone HEart failure and SUrvival Study (EPHESUS), have recently shown that mineralocorticoid receptor (MR) antagonists reduce mortality in patients with heart failure on top of ACE inhibition. This effect could not be attributed solely to blockade of the renal MR-mediated effects on blood pressure, and it has therefore been proposed that aldosterone, the endogenous MR agonist, also acts extrarenally, in particular in the heart. Indeed, MR are present in cardiac tissue, and possibly aldosterone synthesis occurs in the heart. This review critically addresses the following questions: (1) is aldosterone synthesized at cardiac tissue sites, (2) what agonist stimulates cardiac MR normally, and (3) what effects are mediated by aldosterone/MR in the heart that could explain the beneficial effects of MR blockade in heart failure? Conclusions are that most, if not all, of cardiac aldosterone originates in the circulation (i.e., is of adrenal origin), and that glucocorticoids, in addition to aldosterone, may serve as the endogenous agonist of cardiac MR. MR-mediated effects in the heart include effects on endothelial function, cardiac fibrosis and hypertrophy, oxidative stress, cardiac inotropy, coronary flow, and arrhythmias. Some of these effects occur via or in synergy with angiotensin II, and involve a non-MR-mediated mechanism. This raises the possibility that aldosterone synthase inhibitors might exert beneficial effects on top of MR blockade

    Dendritic cells are crucial for cardiovascular remodeling and modulate neutrophil gelatinase-associated lipocalin expression upon mineralocorticoid receptor activation

    No full text
    Background:Adaptive immunity is crucial in cardiovascular and renal inflammation/fibrosis upon hyperactivation of mineralocorticoid receptor. We have previously demonstrated that dendritic cells can respond to mineralocorticoid receptor activation, and the neutrophil gelatinase-associated lipocalin (NGAL) in dendritic cells is highly increased during aldosterone (Aldo)/mineralocorticoid receptor-dependent cardiovascular damage. However, the interrelationship among dendritic cells, target organs inflammation/fibrosis induced by mineralocorticoid receptor, and NGAL-dependence remains unknown.Objective:We studied the role of dendritic cells in mineralocorticoid receptor-dependent tissue remodeling and whether NGAL can modulate the inflammatory response of dendritic cells after mineralocorticoid receptor activation.Methods:Cardiovascular and renal remodeling induced by Aldo and high-salt diet [nephrectomy-Aldo-salt (NAS) model] were analyzed in CD11c.DOG mice, a model which allows dendritic cells ablation by using diphtheria toxin. In addition, in-vitro studies in NGAL-knock out dendritic cells were performed to determine the immunomodulatory role of NGAL upon Aldo treatment.Results:The ablation of dendritic cells prevented the development of cardiac hypertrophy, perivascular fibrosis, and the overexpression of NGAL, brain natriuretic peptide, and two profibrotic factors induced by NAS: collagen 1A1 and connective tissue growth factor. We determined that dendritic cells were not required to prevent renal hypertrophy/fibrosis induced by NAS. Between different immune cells analyzed, we observed that NGAL abundance was higher in antigen-presenting cells, while in-vitro studies showed that mineralocorticoid receptor stimulation in dendritic cells favored NGAL and IL-23 expression (p19 and p40 subunits), which are involved in the development of fibrosis and the Th17-driven response, respectively.Conclusion:NGAL produced by dendritic cells may play a pivotal role in the activation of adaptive immunity that leads to cardiovascular fibrosis during mineralocorticoids excess

    Network Equilibrium under Cumulative Prospect Theory and Endogenous Stochastic Demand and Supply

    No full text
    The 18th International Symposium on Transportation and Traffic Theory (ISTTT), held at the The Hong Kong Polytechnic University in Hong Kong, China on 16-18 July 2009In this paper we consider a network whose travel demands and road capacities are endogenously considered to be random variables. With stochastic demand and supply the route travel times are also random variables. In this scenario travelers choose their routes under travel time uncertainties. Several evidences suggest that the decision making process under uncertainty is significantly different from that without uncertainty. Therefore, the paper applies the decision framework of cumulative prospect theory (CPT) to capture this difference. We first formulate a stochastic network model whose travel demands and link capacities follow lognormal distributions. The stochastic travel times can then be derived under a given route choice modeling framework. For the route choice, we consider a modeling framework where the perceived value and perceived probabilities of travel time outcomes are obtained via transformations following CPT. We then formulate an equilibrium condition similar to that of User Equilibrium in which travelers choose the routes that maximizes their perceived utility values in the face of transformed stochastic travel times. Conditions are established guaranteeing existence (but not uniqueness) of this equilibrium. The paper then proposes a solution algorithm for the proposed model which is then tested with a test network.Department of Civil and Environmental Engineerin
    corecore