2 research outputs found

    High-Resolution Investigation of Nanoparticle Interaction with a Model Pulmonary Surfactant Monolayer

    No full text
    The pulmonary surfactant film spanning the inner alveolar surface prevents alveolar collapse during the end-exhalation and reduces the work of breathing. Nanoparticles (NPs) present in the atmosphere or nanocarriers targeted through the pulmonary route for medical purposes challenge this biological barrier. During interaction with or passage of NPs through the alveolar surfactant, the biophysical functioning of the film may be altered. However, experimental evidence showing detailed biophysical interaction of NPs with the pulmonary surfactant film are scant. In this study, we have investigated the impact of a hydrophobic polyorganosiloxane (AmOrSil20) NPs on the integrity as well as on the structural organization of the model pulmonary surfactant film. Primarily, scanning force microscopic techniques and electron microscopy have been used to visualize the topology as well as to characterize the localization of nanoparticles within the compressed pulmonary surfactant film. We could show that the NPs partition in the fluid phase of the compressed film at lower surface pressure, and at higher surface pressure, such NPs interact extensively with the surface-associated structures. Major amounts of NPs are retained at the interface and are released slowly into the aqueous subphase during repeated compression/expansion cycles. Further, the process of vesicle insertion into the interfacial film was observed to slow down with increasing NP concentrations. The hydrophobic AmOrSil20 NPs up to a given concentration do not substantially affect the structural organization and functioning of pulmonary surfactant film; however, such NPs do show drastic impacts at higher concentrations

    Impact of the Nanoparticle–Protein Corona on Colloidal Stability and Protein Structure

    No full text
    In biological fluids, proteins may associate with nanoparticles (NPs), leading to the formation of a so-called “protein corona” largely defining the biological identity of the particle. Here, we present a novel approach to assess apparent binding affinities for the adsorption/desorption of proteins to silver NPs based on the impact of the corona formation on the agglomeration kinetics of the colloid. Affinities derived from circular dichroism measurements complement these results, simultaneously elucidating structural changes in the adsorbed protein. Employing human serum albumin as a model, apparent affinities in the nanomolar regime resulted from both approaches. Collectively, our findings now allow discrimination between the formation of protein mono- and multilayers on NP surfaces
    corecore